Papers
Topics
Authors
Recent
Search
2000 character limit reached

MCRPL: A Pretrain, Prompt & Fine-tune Paradigm for Non-overlapping Many-to-one Cross-domain Recommendation

Published 16 Jan 2024 in cs.IR | (2401.08228v1)

Abstract: Cross-domain Recommendation (CR) is the task that tends to improve the recommendations in the sparse target domain by leveraging the information from other rich domains. Existing methods of cross-domain recommendation mainly focus on overlapping scenarios by assuming users are totally or partially overlapped, which are taken as bridges to connect different domains. However, this assumption does not always hold since it is illegal to leak users' identity information to other domains. Conducting Non-overlapping MCR (NMCR) is challenging since 1) The absence of overlapping information prevents us from directly aligning different domains, and this situation may get worse in the MCR scenario. 2) The distribution between source and target domains makes it difficult for us to learn common information across domains. To overcome the above challenges, we focus on NMCR, and devise MCRPL as our solution. To address Challenge 1, we first learn shared domain-agnostic and domain-dependent prompts, and pre-train them in the pre-training stage. To address Challenge 2, we further update the domain-dependent prompts with other parameters kept fixed to transfer the domain knowledge to the target domain. We conduct experiments on five real-world domains, and the results show the advance of our MCRPL method compared with several recent SOTA baselines.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.