Papers
Topics
Authors
Recent
Search
2000 character limit reached

The two-way knowledge interaction interface between humans and neural networks

Published 10 Jan 2024 in cs.HC, cs.AI, and cs.LG | (2401.05461v1)

Abstract: Despite neural networks (NN) have been widely applied in various fields and generally outperforms humans, they still lack interpretability to a certain extent, and humans are unable to intuitively understand the decision logic of NN. This also hinders the knowledge interaction between humans and NN, preventing humans from getting involved to give direct guidance when NN's decisions go wrong. While recent research in explainable AI has achieved interpretability of NN from various perspectives, it has not yet provided effective methods for knowledge exchange between humans and NN. To address this problem, we constructed a two-way interaction interface that uses structured representations of visual concepts and their relationships as the "language" for knowledge exchange between humans and NN. Specifically, NN provide intuitive reasoning explanations to humans based on the class-specific structural concepts graph (C-SCG). On the other hand, humans can modify the biases present in the C-SCG through their prior knowledge and reasoning ability, and thus provide direct knowledge guidance to NN through this interface. Through experimental validation, based on this interaction interface, NN can provide humans with easily understandable explanations of the reasoning process. Furthermore, human involvement and prior knowledge can directly and effectively contribute to enhancing the performance of NN.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.