Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Biological Factor Regulatory Neural Network (2304.04982v1)

Published 11 Apr 2023 in cs.LG, cs.AI, and q-bio.QM

Abstract: Genes are fundamental for analyzing biological systems and many recent works proposed to utilize gene expression for various biological tasks by deep learning models. Despite their promising performance, it is hard for deep neural networks to provide biological insights for humans due to their black-box nature. Recently, some works integrated biological knowledge with neural networks to improve the transparency and performance of their models. However, these methods can only incorporate partial biological knowledge, leading to suboptimal performance. In this paper, we propose the Biological Factor Regulatory Neural Network (BFReg-NN), a generic framework to model relations among biological factors in cell systems. BFReg-NN starts from gene expression data and is capable of merging most existing biological knowledge into the model, including the regulatory relations among genes or proteins (e.g., gene regulatory networks (GRN), protein-protein interaction networks (PPI)) and the hierarchical relations among genes, proteins and pathways (e.g., several genes/proteins are contained in a pathway). Moreover, BFReg-NN also has the ability to provide new biologically meaningful insights because of its white-box characteristics. Experimental results on different gene expression-based tasks verify the superiority of BFReg-NN compared with baselines. Our case studies also show that the key insights found by BFReg-NN are consistent with the biological literature.

Citations (1)

Summary

We haven't generated a summary for this paper yet.