Papers
Topics
Authors
Recent
2000 character limit reached

Multiplicity of normalized solutions for the fractional Schrödinger equation with potentials (2401.00621v2)

Published 1 Jan 2024 in math.AP

Abstract: We get multiplicity of normalized solutions for the fractional Schr\"{o}dinger equation $$ (-\Delta)su+V(\varepsilon x)u=\lambda u+h(\varepsilon x)f(u)\quad \mbox{in $\mathbb{R}N$}, \qquad\int_{\mathbb{R}N}|u|2dx=a, $$ where $(-\Delta)s$ is the fractional Laplacian, $s\in(0,1)$, $a,\varepsilon>0$, $\lambda\in\mathbb{R}$ is an unknown parameter that appears as a Lagrange multiplier, $V,h:\mathbb{R}N\rightarrow[0,+\infty)$ are bounded and continuous, and $f$ is continuous function with $L2$-subcritical growth. We prove that the numbers of normalized solutions are at least the numbers of global maximum points of $h$ when $\varepsilon$ is small enough.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.