Multiplicity of solutions for fractional Schrödinger systems in $\mathbb{R}^{N}$ (1703.04370v3)
Abstract: In this paper we deal with the following nonlocal systems of fractional Schr\"odinger equations \begin{equation*} \left{ \begin{array}{ll} \varepsilon{2s} (-\Delta){s}u+V(x)u=Q_{u}(u, v)+\gamma H_{u}(u, v) &\mbox{ in } \mathbb{R}{N}\ \varepsilon{2s} (-\Delta){s}v+W(x)v=Q_{v}(u, v)+\gamma H_{v}(u, v) &\mbox{ in } \mathbb{R}{N} \ u, v>0 &\mbox{ in } \mathbb{R}{N}, \end{array} \right. \end{equation*} where $\varepsilon>0$, $s\in (0, 1)$, $N>2s$, $(-\Delta){s}$ is the fractional Laplacian, $V:\mathbb{R}{N}\rightarrow \mathbb{R}$ and $W:\mathbb{R}{N}\rightarrow \mathbb{R}$ are continuous potentials, $Q$ is a homogeneous $C{2}$-function with subcritical growth, $\gamma\in {0, 1}$ and $H(u, v)=\frac{2}{\alpha+\beta}|u|{\alpha} |v|{\beta}$ with $\alpha, \beta\geq 1$ such that $\alpha+\beta=2{*}_{s}$. We investigate the subcritical case $(\gamma=0)$ and the critical case $(\gamma=1)$, and using Ljusternik-Schnirelmann theory, we relate the number of solutions with the topology of the set where the potentials $V$ and $W$ attain their minimum values.