Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamics for the corotational energy-critical wave map equation with quantized blow-up rates (2401.00394v2)

Published 31 Dec 2023 in math.AP

Abstract: We consider the wave maps from $\mathbb{R}{1+2}$ into $\mathbb{S}2\subset \mathbb{R}3.$ Under an additional assumption of $k$-corotational symmetry, the problem reduces to the one dimensional semilinear wave equation: \begin{equation*} \partial_t2 u-\partial_r2 u-\frac{\partial_r u}{r}+k2 \frac{\sin(2u)}{2r2}=0. \end{equation*} Given any integer $k\ge 1$ and any integer $m\ge 2k,$ we exhibit a set of initial data $(u_0,u_1)$ with energy arbitrarily close to that of the ground state solution $Q$, such that the corresponding solution $u$ blows up in finite time by concentrating its energy. To be precise, the solution $u$ satisfies \begin{equation*} \lim\limits_{t\rightarrow T} \left|\left(u(t,r)-Q\left(\frac{r}{\lambda(t)}\right)-u_1*(r), \partial_t u-u_2*(r)\right)\right|_{H\times L2}=0 \end{equation*} with a quantized speed \begin{equation*} \lambda(t)=c(u_0,u_1)(1+o_{t\to T}(1))\frac{(T-t){\frac{m}{k}}}{|\log(T-t)|{\frac{m}{k(m-k)}}}, \end{equation*} where $|u|{H}:=\int{\mathbb{R}2}\left(|\partial_r u|2+\frac{|u|2}{r2}\right).$

Summary

We haven't generated a summary for this paper yet.