Post-Newtonian limit of generalized scalar-teleparallel theories of gravity (2312.13352v2)
Abstract: We propose a general class of scalar-teleparallel theories, which are based on a scalar field which is coupled to a flat connection with torsion and nonmetricity, and study its post-Newtonian limit using the parametrized post-Newtonian formalism. We find that among this class there are theories whose post-Newtonian limit fully agrees with general relativity; for others only the parameters $\beta$ and $\gamma$ deviate from their general relativity values $\beta = \gamma = 1$, while all other parameters remain the same, thus preserving total momentum conservation, local Lorentz invariance and local position invariance; finally, we also find theories whose post-Newtonian limit is pathological. Our main result is a full classification of the proposed theories into these different cases. We apply our findings to a number of simpler classes of theories and show that for these a subset of the aforementioned cases can be found.
- B. P. Abbott et al. (LIGO Scientific, Virgo), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc] .
- K. Akiyama et al. (Event Horizon Telescope), First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole, Astrophys. J. Lett. 875, L1 (2019), arXiv:1906.11238 [astro-ph.GA] .
- K. Akiyama et al. (Event Horizon Telescope), First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way, Astrophys. J. Lett. 930, L12 (2022).
- N. Aghanim et al. (Planck), Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
- S. Nojiri and S. D. Odintsov, Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models, Phys. Rept. 505, 59 (2011), arXiv:1011.0544 [gr-qc] .
- V. Faraoni and S. Capozziello, Beyond Einstein Gravity, Vol. 170 (Springer, Dordrecht, 2011).
- L. Heisenberg, A systematic approach to generalisations of General Relativity and their cosmological implications, Phys. Rept. 796, 1 (2019), arXiv:1807.01725 [gr-qc] .
- E. N. Saridakis et al. (CANTATA), Modified Gravity and Cosmology: An Update by the CANTATA Network, (2021), arXiv:2105.12582 [gr-qc] .
- J. B. Jiménez, L. Heisenberg, and T. S. Koivisto, The Geometrical Trinity of Gravity, Universe 5, 173 (2019), arXiv:1903.06830 [hep-th] .
- M. Hohmann, Teleparallel Gravity, Lect. Notes Phys. 1017, 145 (2023), arXiv:2207.06438 [gr-qc] .
- L. Heisenberg, M. Hohmann, and S. Kuhn, Homogeneous and isotropic cosmology in general teleparallel gravity, Eur. Phys. J. C 83, 315 (2023a), arXiv:2212.14324 [gr-qc] .
- L. Heisenberg and M. Hohmann, Gauge-invariant cosmological perturbations in general teleparallel gravity, (2023), arXiv:2311.05597 [gr-qc] .
- L. Heisenberg, M. Hohmann, and S. Kuhn, Cosmological teleparallel perturbations, (2023b), arXiv:2311.05495 [gr-qc] .
- C. M. Will, Theory and experiment in gravitational physics (Cambridge University Press, 1993).
- C. M. Will, The Confrontation between General Relativity and Experiment, Living Rev. Rel. 17, 4 (2014), arXiv:1403.7377 [gr-qc] .
- C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, 2018).
- B. Bertotti, L. Iess, and P. Tortora, A test of general relativity using radio links with the Cassini spacecraft, Nature 425, 374 (2003).
- K. Nordtvedt, Jr., Post-Newtonian metric for a general class of scalar tensor gravitational theories and observational consequences, Astrophys. J. 161, 1059 (1970).
- M. S. Gladchenko, V. N. Ponomarev, and V. V. Zhytnikov, PPN metric and PPN torsion in the quadratic Poincare gauge theory of gravity, Phys. Lett. B241, 67 (1990).
- G. J. Olmo, Post-Newtonian constraints on f(R) cosmologies in metric and Palatini formalism, Phys. Rev. D72, 083505 (2005), arXiv:gr-qc/0505135 [gr-qc] .
- T. Clifton, M. Banados, and C. Skordis, The Parameterised Post-Newtonian Limit of Bimetric Theories of Gravity, Class. Quant. Grav. 27, 235020 (2010), arXiv:1006.5619 [gr-qc] .
- L. Perivolaropoulos, PPN Parameter gamma and Solar System Constraints of Massive Brans-Dicke Theories, Phys. Rev. D81, 047501 (2010), arXiv:0911.3401 [gr-qc] .
- M. Hohmann, Parameterized post-Newtonian formalism for multimetric gravity, Class. Quant. Grav. 31, 135003 (2014), arXiv:1309.7787 [gr-qc] .
- J.-T. Li, Y.-P. Wu, and C.-Q. Geng, Parametrized post-Newtonian limit of the teleparallel dark energy model, Phys. Rev. D89, 044040 (2014), arXiv:1312.4332 [gr-qc] .
- M. Hohmann, Parametrized post-Newtonian limit of Horndeski’s gravity theory, Phys. Rev. D92, 064019 (2015), arXiv:1506.04253 [gr-qc] .
- M. Hohmann, Post-Newtonian parameter γ𝛾\gammaitalic_γ and the deflection of light in ghost-free massive bimetric gravity, Phys. Rev. D95, 124049 (2017), arXiv:1701.07700 [gr-qc] .
- H. Mohseni Sadjadi, Parameterized post-Newtonian approximation in a teleparallel model of dark energy with a boundary term, Eur. Phys. J. C77, 191 (2017), arXiv:1606.04362 [gr-qc] .
- M. Hohmann, Gauge-invariant approach to the parametrized post-Newtonian formalism, Phys. Rev. D101, 024061 (2020), arXiv:1910.09245 [gr-qc] .
- U. Ualikhanova and M. Hohmann, Parameterized post-Newtonian limit of general teleparallel gravity theories, Phys. Rev. D100, 104011 (2019), arXiv:1907.08178 [gr-qc] .
- E. D. Emtsova and M. Hohmann, Post-Newtonian limit of scalar-torsion theories of gravity as analogue to scalar-curvature theories, Phys. Rev. D101, 024017 (2020), arXiv:1909.09355 [gr-qc] .
- K. Flathmann and M. Hohmann, Post-Newtonian Limit of Generalized Scalar-Torsion Theories of Gravity, Phys. Rev. D101, 024005 (2020), arXiv:1910.01023 [gr-qc] .
- M. Hohmann, Variational Principles in Teleparallel Gravity Theories, Universe 7, 114 (2021), arXiv:2104.00536 [gr-qc] .
- V. Faraoni, Cosmology in scalar tensor gravity, Vol. 139 (2004).
- Y. Fujii and K. Maeda, The scalar-tensor theory of gravitation (Cambridge University Press, 2007).
- M. Hohmann, L. Järv, and U. Ualikhanova, Covariant formulation of scalar-torsion gravity, Phys. Rev. D97, 104011 (2018), arXiv:1801.05786 [gr-qc] .
- X.-M. Deng and Y. Xie, Solar System tests of a scalar-tensor gravity with a general potential: Insensitivity of light deflection and Cassini tracking, Phys. Rev. D 93, 044013 (2016).
- M. Hohmann and A. Schärer, Post-Newtonian parameters γ𝛾\gammaitalic_γ and β𝛽\betaitalic_β of scalar-tensor gravity for a homogeneous gravitating sphere, Phys. Rev. D96, 104026 (2017), arXiv:1708.07851 [gr-qc] .
- A. Golovnev and T. Koivisto, Cosmological perturbations in modified teleparallel gravity models, JCAP 1811 (11), 012, arXiv:1808.05565 [gr-qc] .
- A. Golovnev and M.-J. Guzmán, Foundational issues in f(T) gravity theory, Int. J. Geom. Meth. Mod. Phys. 18, 2140007 (2021), arXiv:2012.14408 [gr-qc] .
- M. Blagojević and J. M. Nester, Local symmetries and physical degrees of freedom in f(T)𝑓𝑇f(T)italic_f ( italic_T ) gravity: a Dirac Hamiltonian constraint analysis, Phys. Rev. D 102, 064025 (2020), arXiv:2006.15303 [gr-qc] .
- M. J. Guzmán and R. Ferraro, Degrees of freedom and Hamiltonian formalism for f(T)𝑓𝑇f(T)italic_f ( italic_T ) gravity, Int. J. Mod. Phys. A 35, 2040022 (2020), arXiv:1910.03100 [gr-qc] .
- J. Beltrán Jiménez and K. F. Dialektopoulos, Non-Linear Obstructions for Consistent New General Relativity, JCAP 01, 018, arXiv:1907.10038 [gr-qc] .
- A. Golovnev and M.-J. Guzman, Nontrivial Minkowski backgrounds in f(T)𝑓𝑇f(T)italic_f ( italic_T ) gravity, Phys. Rev. D 103, 044009 (2021), arXiv:2012.00696 [gr-qc] .
- M. Li and H. Rao, Irregular universe in the Nieh-Yan modified teleparallel gravity, Phys. Lett. B 841, 137929 (2023), arXiv:2301.02847 [gr-qc] .
- G. W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys. 10, 363 (1974).
- T. Kobayashi, M. Yamaguchi, and J. Yokoyama, Generalized G-inflation: Inflation with the most general second-order field equations, Prog. Theor. Phys. 126, 511 (2011), arXiv:1105.5723 [hep-th] .
- T. Kobayashi, Horndeski theory and beyond: a review, Rept. Prog. Phys. 82, 086901 (2019), arXiv:1901.07183 [gr-qc] .
- S. Bahamonde, K. F. Dialektopoulos, and J. L. Said, Can Horndeski Theory be recast using Teleparallel Gravity?, Phys. Rev. D100, 064018 (2019), arXiv:1904.10791 [gr-qc] .
- K. Flathmann and M. Hohmann, Post-Newtonian limit of generalized symmetric teleparallel gravity, Phys. Rev. D103, 044030 (2021), arXiv:2012.12875 [gr-qc] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.