Papers
Topics
Authors
Recent
Search
2000 character limit reached

Molecular Hypergraph Neural Networks

Published 20 Dec 2023 in physics.chem-ph and cs.LG | (2312.13136v2)

Abstract: Graph neural networks (GNNs) have demonstrated promising performance across various chemistry-related tasks. However, conventional graphs only model the pairwise connectivity in molecules, failing to adequately represent higher-order connections like multi-center bonds and conjugated structures. To tackle this challenge, we introduce molecular hypergraphs and propose Molecular Hypergraph Neural Networks (MHNN) to predict the optoelectronic properties of organic semiconductors, where hyperedges represent conjugated structures. A general algorithm is designed for irregular high-order connections, which can efficiently operate on molecular hypergraphs with hyperedges of various orders. The results show that MHNN outperforms all baseline models on most tasks of OPV, OCELOTv1 and PCQM4Mv2 datasets. Notably, MHNN achieves this without any 3D geometric information, surpassing the baseline model that utilizes atom positions. Moreover, MHNN achieves better performance than pretrained GNNs under limited training data, underscoring its excellent data efficiency. This work provides a new strategy for more general molecular representations and property prediction tasks related to high-order connections.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 12 likes about this paper.