Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

ComplexityNet: Increasing LLM Inference Efficiency by Learning Task Complexity (2312.11511v3)

Published 12 Dec 2023 in cs.CL, cs.AI, and cs.LG

Abstract: We present ComplexityNet, a streamlined LLM designed for assessing task complexity. This model predicts the likelihood of accurate output by various LLMs, each with different capabilities. Our initial application of ComplexityNet involves the Mostly Basic Python Problems (MBPP) dataset. We pioneered the creation of the first set of labels to define task complexity. ComplexityNet achieved a notable 79% accuracy in determining task complexity, a significant improvement over the 34% accuracy of the original, non fine-tuned model. Furthermore, ComplexityNet effectively reduces computational resource usage by 90% compared to using the highest complexity model, while maintaining a high code generation accuracy of 86.7%. This study demonstrates that fine-tuning smaller models to categorize tasks based on their complexity can lead to a more balanced trade-off between accuracy and efficiency in the use of LLMs. Our findings suggest a promising direction for optimizing LLM applications, especially in resource-constrained environments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: