Full three-loop Renormalisation of an abelian chiral Gauge Theory with non-anticommuting $γ_5$ in the BMHV Scheme
Abstract: In this work we present a complete three-loop renormalisation of an abelian chiral gauge theory within the Breitenlohner-Maison/'t Hooft-Veltman (BMHV) scheme of dimensional regularisation (DReg). In this scheme the $\gamma_5$-matrix appearing in gauge interactions is a non-anticommuting object, leading to a breaking of gauge and BRST invariance. Employing an efficient method based on the quantum action principle, we obtain the complete three-loop counterterm action which serves both to render the theory finite and to restore gauge and BRST invariance. The UV singular counterterms involve not only higher order $\epsilon$-poles but also new counterterm structures emerging at the three-loop level for the first time; the finite symmetry-restoring counterterms are restricted to the same structures as at lower loop orders, just with different coefficients, aligning with our expectations. Both the singular and the finite counterterms include structures which cannot be obtained by the standard multiplicative renormalisation. Our results demonstrate that a rigorous treatment of chiral gauge theories with $\gamma_5$ defined in the BMHV scheme at the multi-loop level is possible and that the obtained counterterm action is suitable for computer implementations, allowing automated calculations without ambiguities caused by $\gamma_5$.
- Gerard ’t Hooft and M.J.G. Veltman “Regularization and Renormalization of Gauge Fields” In Nucl. Phys. B 44, 1972, pp. 189–213 DOI: 10.1016/0550-3213(72)90279-9
- “Dimensional Renormalization: The Number of Dimensions as a Regularizing Parameter” In Nuovo Cim. B 12, 1972, pp. 20–26 DOI: 10.1007/BF02895558
- “Analytic renormalization via continuous space dimension” In Lett. Nuovo Cim. 4, 1972, pp. 329–332 DOI: 10.1007/BF02756527
- “Dimensional regularization, abnormal amplitudes and anomalies” In Nuovo Cim. A 17, 1973, pp. 578–586 DOI: 10.1007/BF02786835
- “Dimensional regularization and PCAC” In Nuovo Cim. A 18, 1973, pp. 94–104 DOI: 10.1007/BF02820839
- “Anomalies via dimensional regularization” In Nuovo Cim. A 19, 1974, pp. 219–224 DOI: 10.1007/BF02801848
- Michael S. Chanowitz, M. Furman and I. Hinchliffe “The Axial Current in Dimensional Regularization” In Nucl. Phys. B 159, 1979, pp. 225–243 DOI: 10.1016/0550-3213(79)90333-X
- T.L. Trueman “Spurious anomalies in dimensional renormalization” In Z. Phys. C 69, 1996, pp. 525–536 DOI: 10.1007/BF02907437
- F. Jegerlehner “Facts of life with gamma(5)” In Eur. Phys. J. C 18, 2001, pp. 673–679 DOI: 10.1007/s100520100573
- C. Gnendiger “To d𝑑{d}italic_d, or not to d𝑑{d}italic_d: recent developments and comparisons of regularization schemes” In Eur. Phys. J. C 77.7, 2017, pp. 471 DOI: 10.1140/epjc/s10052-017-5023-2
- “Dimensionally Renormalized Green’s Functions for Theories with Massless Particles. 1.” In Commun. Math. Phys. 52, 1977, pp. 39 DOI: 10.1007/BF01609070
- “Dimensionally Renormalized Green’s Functions for Theories with Massless Particles. 2.” In Commun. Math. Phys. 52, 1977, pp. 55 DOI: 10.1007/BF01609071
- “Dimensional Renormalization and the Action Principle” In Commun. Math. Phys. 52, 1977, pp. 11–38 DOI: 10.1007/BF01609069
- “Algebraic renormalization: Perturbative renormalization, symmetries and anomalies”, 1995 DOI: 10.1007/978-3-540-49192-7
- “Dimensional regularization and Breitenlohner-Maison/’t Hooft-Veltman scheme for γ5subscript𝛾5\gamma_{5}italic_γ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT applied to chiral YM theories: full one-loop counterterm and RGE structure” In JHEP 08.08, 2020, pp. 024 DOI: 10.1007/JHEP08(2020)024
- “Two-loop application of the Breitenlohner-Maison/’t Hooft-Veltman scheme with non-anticommuting γ𝛾\gammaitalic_γ55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT: full renormalization and symmetry-restoring counterterms in an abelian chiral gauge theory” In JHEP 11, 2021, pp. 159 DOI: 10.1007/JHEP11(2021)159
- Hermès Bélusca-Maïto “Renormalisation group equations for BRST-restored chiral theory in dimensional renormalisation: application to two-loop chiral-QED” In JHEP 03, 2023, pp. 202 DOI: 10.1007/JHEP03(2023)202
- “Introduction to Renormalization Theory and Chiral Gauge Theories in Dimensional Regularization with Non-Anticommuting γ𝛾\gammaitalic_γ55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT” In Symmetry 15.3, 2023, pp. 622 DOI: 10.3390/sym15030622
- “Action principles, restoration of BRS symmetry and the renormalization group equation for chiral nonAbelian gauge theories in dimensional renormalization with a nonanticommuting gamma(5)” In Nucl. Phys. B 572, 2000, pp. 387–477 DOI: 10.1016/S0550-3213(99)00453-8
- Claudia Cornella, Ferruccio Feruglio and Luca Vecchi “Gauge invariance and finite counterterms in chiral gauge theories” In JHEP 02, 2023, pp. 244 DOI: 10.1007/JHEP02(2023)244
- D. Sanchez-Ruiz “BRS symmetry restoration of chiral Abelian Higgs-Kibble theory in dimensional renormalization with a nonanticommuting gamma(5)” In Phys. Rev. D 68, 2003, pp. 025009 DOI: 10.1103/PhysRevD.68.025009
- Christian Schubert “The Yukawa Model as an Example for Dimensional Renormalization With γ𝛾\gammaitalic_γ (5)” In Nucl. Phys. B 323, 1989, pp. 478–492 DOI: 10.1016/0550-3213(89)90153-3
- “Low-energy effective field theory below the electroweak scale: one-loop renormalization in the ’t Hooft-Veltman scheme”, 2023 arXiv:2310.13051 [hep-ph]
- “On γ5subscript𝛾5\gamma_{5}italic_γ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT schemes and the interplay of SMEFT operators in the Higgs-gluon coupling”, 2023 arXiv:2310.18221 [hep-ph]
- Dirk Kreimer “The γ𝛾\gammaitalic_γ(5) Problem and Anomalies: A Clifford Algebra Approach” In Phys. Lett. B 237, 1990, pp. 59–62 DOI: 10.1016/0370-2693(90)90461-E
- J.G. Korner, D. Kreimer and K. Schilcher “A Practicable gamma(5) scheme in dimensional regularization” In Z. Phys. C 54, 1992, pp. 503–512 DOI: 10.1007/BF01559471
- Dirk Kreimer “The Role of gamma(5) in dimensional regularization”, 1993 arXiv:hep-ph/9401354
- “Four-loop strong coupling beta-function in the Standard Model” In Phys. Lett. B762, 2016, pp. 151–156 DOI: 10.1016/j.physletb.2016.09.007
- M.F. Zoller “Top-Yukawa effects on the β𝛽\betaitalic_β-function of the strong coupling in the SM at four-loop level” In JHEP 02, 2016, pp. 095 DOI: 10.1007/JHEP02(2016)095
- “Weyl Consistency Conditions and γ𝛾\gammaitalic_γ55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT” In Phys. Rev. Lett. 123.4, 2019, pp. 041602 DOI: 10.1103/PhysRevLett.123.041602
- “Gauge Coupling β𝛽\betaitalic_β Functions to Four-Loop Order in the Standard Model” In Phys. Rev. Lett. 124.7, 2020, pp. 071803 DOI: 10.1103/PhysRevLett.124.071803
- Joshua Davies, Florian Herren and Anders Eller Thomsen “General gauge-Yukawa-quartic β𝛽\betaitalic_β-functions at 4-3-2-loop order” In JHEP 01, 2022, pp. 051 DOI: 10.1007/JHEP01(2022)051
- Florian Herren “Higher-order β𝛽\betaitalic_β-functions in the Standard Model and beyond” In SciPost Phys. Proc. 7, 2022, pp. 029 DOI: 10.21468/SciPostPhysProc.7.029
- H. Osborn “Derivation of a Four-dimensional c𝑐citalic_c Theorem” In Phys. Lett. B 222, 1989, pp. 97–102 DOI: 10.1016/0370-2693(89)90729-6
- “Analogs for the c𝑐citalic_c Theorem for Four-dimensional Renormalizable Field Theories” In Nucl. Phys. B 343, 1990, pp. 647–688 DOI: 10.1016/0550-3213(90)90584-Z
- H. Osborn “Weyl consistency conditions and a local renormalization group equation for general renormalizable field theories” In Nucl. Phys. B 363, 1991, pp. 486–526 DOI: 10.1016/0550-3213(91)80030-P
- “Constraints on RG Flow for Four Dimensional Quantum Field Theories” In Nucl. Phys. B 883, 2014, pp. 425–500 DOI: 10.1016/j.nuclphysb.2014.03.018
- Colin Poole and Anders Eller Thomsen “Constraints on 3- and 4-loop β𝛽\betaitalic_β-functions in a general four-dimensional Quantum Field Theory” In JHEP 09, 2019, pp. 055 DOI: 10.1007/JHEP09(2019)055
- Long Chen “An observation on Feynman diagrams with axial anomalous subgraphs in dimensional regularization with an anticommuting γ5subscript𝛾5\gamma_{5}italic_γ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT”, 2023 arXiv:2304.13814 [hep-ph]
- Stephen L. Adler “Axial vector vertex in spinor electrodynamics” In Phys. Rev. 177, 1969, pp. 2426–2438 DOI: 10.1103/PhysRev.177.2426
- “A PCAC puzzle: π0→γγ→superscript𝜋0𝛾𝛾\pi^{0}\to\gamma\gammaitalic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_γ italic_γ in the σ𝜎\sigmaitalic_σ model” In Nuovo Cim. A 60, 1969, pp. 47–61 DOI: 10.1007/BF02823296
- Stephen L. Adler and William A. Bardeen “Absence of higher order corrections in the anomalous axial vector divergence equation” In Phys. Rev. 182, 1969, pp. 1517–1536 DOI: 10.1103/PhysRev.182.1517
- A.M. Bruque, A.L. Cherchiglia and M. Pérez-Victoria “Dimensional regularization vs methods in fixed dimension with and without γ5subscript𝛾5\gamma_{5}italic_γ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT” In JHEP 08, 2018, pp. 109 DOI: 10.1007/JHEP08(2018)109
- “Two loop mixing of dimension five flavor changing operators” In Phys. Lett. B 344, 1995, pp. 308–318 DOI: 10.1016/0370-2693(94)01553-O
- Konstantin G. Chetyrkin, Mikolaj Misiak and Manfred Munz “Beta functions and anomalous dimensions up to three loops” In Nucl. Phys. B 518, 1998, pp. 473–494 DOI: 10.1016/S0550-3213(98)00122-9
- “Three-loop MSSM Higgs-boson mass predictions and regularization by dimensional reduction” In Nucl. Phys. B 935, 2018, pp. 1–16 DOI: 10.1016/j.nuclphysb.2018.08.005
- S. Wolfram “Mathematica 12.0” Published by Wolfram Research Inc., 2019 URL: https://www.wolfram.com
- Thomas Hahn “Generating Feynman diagrams and amplitudes with FeynArts 3” In Comput. Phys. Commun. 140, 2001, pp. 418–431 DOI: 10.1016/S0010-4655(01)00290-9
- R. Mertig, M. Bohm and Ansgar Denner “FEYN CALC: Computer algebraic calculation of Feynman amplitudes” In Comput. Phys. Commun. 64, 1991, pp. 345–359 DOI: 10.1016/0010-4655(91)90130-D
- Vladyslav Shtabovenko, Rolf Mertig and Frederik Orellana “New Developments in FeynCalc 9.0” In Comput. Phys. Commun. 207, 2016, pp. 432–444 DOI: 10.1016/j.cpc.2016.06.008
- Vladyslav Shtabovenko, Rolf Mertig and Frederik Orellana “FeynCalc 9.3: New features and improvements” In Comput. Phys. Commun. 256, 2020, pp. 107478 DOI: 10.1016/j.cpc.2020.107478
- Vladyslav Shtabovenko “FeynCalc goes multiloop” In J. Phys. Conf. Ser. 2438.1, 2023, pp. 012140 DOI: 10.1088/1742-6596/2438/1/012140
- Vladyslav Shtabovenko “FeynHelpers: Connecting FeynCalc to FIRE and Package-X” In Comput. Phys. Commun. 218, 2017, pp. 48–65 DOI: 10.1016/j.cpc.2017.04.014
- “FIRE6: Feynman Integral REduction with Modular Arithmetic” In Comput. Phys. Commun. 247, 2020, pp. 106877 DOI: 10.1016/j.cpc.2019.106877
- “The five-loop beta function of Yang-Mills theory with fermions” In JHEP 02, 2017, pp. 090 DOI: 10.1007/JHEP02(2017)090
- “The five-loop Beta function for a general gauge group and anomalous dimensions beyond Feynman gauge” In JHEP 10, 2017, pp. 166 DOI: 10.1007/JHEP10(2017)166
- “Two-Loop Rational Terms in Yang-Mills Theories” In JHEP 10, 2020, pp. 016 DOI: 10.1007/JHEP10(2020)016
- “High-precision epsilon expansions of single-mass-scale four-loop vacuum bubbles” In JHEP 06, 2005, pp. 051 DOI: 10.1088/1126-6708/2005/06/051
- Stephen P. Martin and David G. Robertson “Evaluation of the general 3-loop vacuum Feynman integral” In Phys. Rev. D 95.1, 2017, pp. 016008 DOI: 10.1103/PhysRevD.95.016008
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.