Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uplifting the Expressive Power of Graph Neural Networks through Graph Partitioning (2312.08671v1)

Published 14 Dec 2023 in cs.LG and cs.AI

Abstract: Graph Neural Networks (GNNs) have paved its way for being a cornerstone in graph related learning tasks. From a theoretical perspective, the expressive power of GNNs is primarily characterised according to their ability to distinguish non-isomorphic graphs. It is a well-known fact that most of the conventional GNNs are upper-bounded by Weisfeiler-Lehman graph isomorphism test (1-WL). In this work, we study the expressive power of graph neural networks through the lens of graph partitioning. This follows from our observation that permutation invariant graph partitioning enables a powerful way of exploring structural interactions among vertex sets and subgraphs, and can help uplifting the expressive power of GNNs efficiently. Based on this, we first establish a theoretical connection between graph partitioning and graph isomorphism. Then we introduce a novel GNN architecture, namely Graph Partitioning Neural Networks (GPNNs). We theoretically analyse how a graph partitioning scheme and different kinds of structural interactions relate to the k-WL hierarchy. Empirically, we demonstrate its superior performance over existing GNN models in a variety of graph benchmark tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Asela Hevapathige (4 papers)
  2. Qing Wang (341 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.