A covariant regulator for entanglement entropy: proofs of the Bekenstein bound and QNEC (2312.07646v1)
Abstract: While von Neumann entropies for subregions in quantum field theory universally contain ultraviolet divergences, differences between von Neumann entropies are finite and well-defined in many physically relevant scenarios. We demonstrate that such a notion of entropy differences can be rigorously defined in quantum field theory in a general curved spacetime by introducing a novel, covariant regulator for the entropy based on the modular crossed product. This regulator associates a type II von Neumann algebra to each spacetime subregion, resulting in well-defined renormalized entropies. This prescription reproduces formulas for entropy differences that coincide with heuristic formulas widely used in the literature, and we prove that it satisfies desirable properties such as unitary invariance and concavity. As an application, we provide proofs of the Bekenstein bound and the quantum null energy condition, formulated directly in terms of vacuum-subtracted von Neumann entropies.
- H. B. Nielsen and M. Ninomiya, Absence of neutrinos on a lattice:(i). proof by homotopy theory, Nuclear Physics B 185, 20 (1981a).
- H. B. Nielsen and M. Ninomiya, Absence of neutrinos on a lattice:(ii). intuitive topological proof, Nuclear Physics B 193, 173 (1981b).
- H. B. Nielsen and M. Ninomiya, No-go theorum for regularizing chiral fermions, Tech. Rep. (Science Research Council, 1981).
- D. Friedan, A proof of the nielsen-ninomiya theorem, Communications in Mathematical Physics 85, 481 (1982).
- S. Hellerman, D. Orlando, and M. Watanabe, Quantum Information Theory of the Gravitational Anomaly, arXiv e-prints , arXiv:2101.03320 (2021), arXiv:2101.03320 [hep-th] .
- R. Haag and D. Kastler, An algebraic approach to quantum field theory, Journal of Mathematical Physics 5, 848 (1964).
- H. Casini and M. Huerta, A finite entanglement entropy and the c-theorem, Physics Letters B 600, 142 (2004), arXiv:hep-th/0405111 [hep-th] .
- H. Casini and M. Huerta, Renormalization group running of the entanglement entropy of a circle, Phys. Rev. D 85, 125016 (2012), arXiv:1202.5650 [hep-th] .
- D. Marolf, D. Minic, and S. F. Ross, Notes on spacetime thermodynamics and the observer dependence of entropy, Phys. Rev. D 69, 064006 (2004), arXiv:hep-th/0310022 [hep-th] .
- H. Casini, Relative entropy and the Bekenstein bound, Classical and Quantum Gravity 25, 205021 (2008), arXiv:0804.2182 [hep-th] .
- A. C. Wall, Proof of the generalized second law for rapidly changing fields and arbitrary horizon slices, Phys. Rev. D 85, 104049 (2012), arXiv:1105.3445 [gr-qc] .
- S. Hollands and R. M. Wald, Quantum fields in curved spacetime, Phys. Rept. 574, 1 (2015), arXiv:1401.2026 [gr-qc] .
- E. Witten, Why Does Quantum Field Theory In Curved Spacetime Make Sense? And What Happens To The Algebra of Observables In The Thermodynamic Limit?, arXiv e-prints , arXiv:2112.11614 (2021), arXiv:2112.11614 [hep-th] .
- M. Takesaki, Duality for crossed products and the structure of von neumann algebras of type iii, (1973).
- E. Witten, Gravity and the crossed product, Journal of High Energy Physics 2022, 8 (2022), arXiv:2112.12828 [hep-th] .
- V. Chandrasekaran, G. Penington, and E. Witten, Large N algebras and generalized entropy, arXiv e-prints , arXiv:2209.10454 (2022), arXiv:2209.10454 [hep-th] .
- K. Jensen, J. Sorce, and A. Speranza, Generalized entropy for general subregions in quantum gravity, (2023), arXiv:2306.01837 [hep-th] .
- J. Kudler-Flam, S. Leutheusser, and G. Satishchandran, Generalized Black Hole Entropy is von Neumann Entropy, arXiv e-prints , arXiv:2309.15897 (2023a), arXiv:2309.15897 [hep-th] .
- S. A. Ahmad and R. Jefferson, Crossed product algebras and generalized entropy for subregions, arXiv e-prints , arXiv:2306.07323 (2023), arXiv:2306.07323 [hep-th] .
- M. S. Klinger and R. G. Leigh, Crossed Products, Extended Phase Spaces and the Resolution of Entanglement Singularities, arXiv e-prints , arXiv:2306.09314 (2023), arXiv:2306.09314 [hep-th] .
- J. J. Bisognano and E. H. Wichmann, On the duality condition for a hermitian scalar field, Journal of Mathematical Physics 16, 985 (1975).
- J. D. Bekenstein, Universal upper bound on the entropy-to-energy ratio for bounded systems, Physical Review D 23, 287 (1981).
- R. Longo and F. Xu, Comment on the Bekenstein bound, Journal of Geometry and Physics 130, 113 (2018), arXiv:1802.07184 [math-ph] .
- H. Casini, E. Testé, and G. Torroba, Modular Hamiltonians on the null plane and the Markov property of the vacuum state, Journal of Physics A Mathematical General 50, 364001 (2017), arXiv:1703.10656 [hep-th] .
- F. Ceyhan and T. Faulkner, Recovering the QNEC from the ANEC, arXiv e-prints , arXiv:1812.04683 (2018), arXiv:1812.04683 [hep-th] .
- F. J. Murray and J. v. Neumann, On rings of operators, Annals of Mathematics , 116 (1936).
- M. Takesaki, Tomita’s theory of modular Hilbert algebras and its applications, Vol. 128 (Springer, 2006).
- H. Araki, Relative entropy of states of von neumann algebras, Publications of the Research Institute for Mathematical Sciences 11, 809 (1976).
- H. Borchers, Field operators as c∞superscript𝑐c^{\infty}italic_c start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT functions in spacelike directions, Il Nuovo Cimento (1955-1965) 33, 1600 (1964).
- A. Strohmaier and E. Witten, Analytic states in quantum field theory on curved spacetimes, arXiv e-prints , arXiv:2302.02709 (2023), arXiv:2302.02709 [math-ph] .
- J. Kudler-Flam, S. Leutheusser, and G. Satishchandran, The physical origin of type ii algebras in quantum gravity (2023b), to appear.
- H. Casini, S. Grillo, and D. Pontello, Relative entropy for coherent states from Araki formula, Phys. Rev. D 99, 125020 (2019), arXiv:1903.00109 [hep-th] .
- T. Faulkner and A. J. Speranza (2023), to appear.
- K. Schmüdgen, Unbounded Self-adjoint Operators on Hilbert Space, Graduate Texts in Mathematics (Springer, Dordrecht, 2012).
- H. Reeh and S. Schlieder, Bemerkungen zur unitäräquivalenz von lorentzinvarianten feldern, Nuovo Cim. 22, 1051 (1961).
- B. Simon, Loewner’s theorem on monotone matrix functions (Springer, 2019).
- A. Uhlmann, Relative Entropy and the Wigner-Yanase-Dyson-Lieb Concavity in an Interpolation Theory, Commun. Math. Phys. 54, 21 (1977).
- M. Ohya and D. Petz, Quantum entropy and its use (Springer-Verlag Berlin, 1993).
- R. Kubo, Statistical mechanical theory of irreversible processes. 1. General theory and simple applications in magnetic and conduction problems, J. Phys. Soc. Jap. 12, 570 (1957).
- P. C. Martin and J. Schwinger, Theory of many-particle systems. i, Phys. Rev. 115, 1342 (1959).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.