Crossed product algebras and generalized entropy for subregions (2306.07323v2)
Abstract: An early result of algebraic quantum field theory is that the algebra of any subregion in a QFT is a von Neumann factor of type III$1$, in which entropy cannot be well-defined because such algebras do not admit a trace or density states. However, associated to the algebra is a modular group of automorphisms characterizing the local dynamics of degrees of freedom in the region, and the crossed product of the algebra with its modular group yields a type II$\infty$ factor, in which traces and hence von Neumann entropy can be well-defined. In this work, we generalize recent constructions of the crossed product algebra for the TFD to, in principle, arbitrary spacetime regions in arbitrary QFTs, paving the way to the study of entanglement entropy without UV divergences. In contrast to previous works, we emphasize that this construction is independent of gravity. In this sense, the crossed product construction represents a refinement of Haag's assignment of nets of observable algebras to spacetime regions by providing a natural construction of a type II factor. We present several concrete examples: a QFT in Rindler space, a CFT in an open ball of Minkowski space, and arbitrary boundary subregions in AdS/CFT. In the holographic setting, we provide a novel argument for why the bulk dual must be the entanglement wedge, and discuss the distinction arising from boundary modular flow between causal and entanglement wedges for excited states and disjoint regions.
- 1993. OCLC: 722548066.
- H. Araki, Mathematical theory of quantum fields. 1999.
- C. J. Fewster and K. Rejzner, “Algebraic quantum field theory – an introduction,” 2019.
- M. Takesaki, Theory of Operator Algebras I. 2002.
- K. Fredenhagen, “On the Modular Structure of Local Algebras of Observables,” Commun. Math. Phys. 97 (1985) 79.
- H. Araki, “Type of von Neumann Algebra Associated with Free Field,” Progress of Theoretical Physics 32 no. 6, (Dec., 1964) 956–965.
- H. Araki, “A Lattice of Von Neumann Algebras Associated with the Quantum Theory of a Free Bose Field,” Journal of Mathematical Physics 4 no. 11, (Dec., 1963) 1343–1362.
- H. Araki, “Von Neumann Algebras of Local Observables for Free Scalar Field,” Journal of Mathematical Physics 5 no. 1, (Dec., 1964) 1–13.
- J. Yngvason, “The Role of Type III Factors in Quantum Field Theory,” Reports on Mathematical Physics 55 no. 1, (Feb., 2005) 135–147. arXiv: math-ph/0411058.
- R. D. Sorkin, “1983 paper on entanglement entropy: ”On the Entropy of the Vacuum outside a Horizon”,” in 10th International Conference on General Relativity and Gravitation, vol. 2, pp. 734–736. 1984. arXiv:1402.3589 [gr-qc].
- C. J. Fewster, “The Split Property for Locally Covariant Quantum Field Theories in Curved Spacetime,” Letters in Mathematical Physics 105 no. 12, (Dec., 2015) 1633–1661.
- C. J. Fewster, “The split property for quantum field theories in flat and curved spacetimes,” Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 86 no. 2, (Oct., 2016) 153–175.
- S. Raju, “Failure of the split property in gravity and the information paradox,” Class. Quant. Grav. 39 no. 6, (2022) 064002, arXiv:2110.05470 [hep-th].
- S. J. Summers, “Subsystems and Independence in Relativistic Microscopic Physics,” Feb., 2009. http://arxiv.org/abs/0812.1517. arXiv:0812.1517 [math-ph, physics:quant-ph].
- M. Rédei and S. J. Summers, “When Are Quantum Systems Operationally Independent?,” International Journal of Theoretical Physics 49 no. 12, (Dec., 2010) 3250–3261.
- E. Witten, “APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory,” Rev. Mod. Phys. 90 no. 4, (2018) 045003, arXiv:1803.04993 [hep-th].
- J. Sorce, “Notes on the type classification of von Neumann algebras,” arXiv:2302.01958 [hep-th].
- R. Jefferson, “Notes on operator algebras for physicists,” to appear .
- S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” Phys. Rev. Lett. 96 (2006) 181602, arXiv:hep-th/0603001.
- N. Engelhardt and A. C. Wall, “Quantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical Regime,” JHEP 01 (2015) 073, arXiv:1408.3203 [hep-th].
- X. Dong, D. Harlow, and A. C. Wall, “Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality,” Phys. Rev. Lett. 117 no. 2, (2016) 021601, arXiv:1601.05416 [hep-th].
- R. Jefferson, “Black holes and quantum entanglement,” arXiv:1901.01149 [physics.pop-ph].
- E. Witten, “Gravity and the crossed product,” JHEP 10 (2022) 008, arXiv:2112.12828 [hep-th].
- R. Jefferson, “Comments on black hole interiors and modular inclusions,” SciPost Phys. 6 no. 4, (2019) 042, arXiv:1811.08900 [hep-th].
- S. Leutheusser and H. Liu, “Emergent times in holographic duality,” arXiv:2112.12156 [hep-th].
- S. Leutheusser and H. Liu, “Causal connectability between quantum systems and the black hole interior in holographic duality,” arXiv:2110.05497 [hep-th].
- E. Witten, “Why Does Quantum Field Theory In Curved Spacetime Make Sense? And What Happens To The Algebra of Observables In The Thermodynamic Limit?,” arXiv:2112.11614 [hep-th].
- K. Furuya, N. Lashkari, M. Moosa, and S. Ouseph, “Information loss, mixing and emergent type III11{}_{1}start_FLOATSUBSCRIPT 1 end_FLOATSUBSCRIPT factors,” arXiv:2305.16028 [hep-th].
- S. Banerjee, M. Dorband, J. Erdmenger, and A.-L. Weigel, “Geometric Phases Characterise Operator Algebras and Missing Information,” arXiv:2306.00055 [hep-th].
- V. Chandrasekaran, G. Penington, and E. Witten, “Large N algebras and generalized entropy,” arXiv:2209.10454 [hep-th].
- V. Chandrasekaran, R. Longo, G. Penington, and E. Witten, “An algebra of observables for de Sitter space,” JHEP 02 (2023) 082, arXiv:2206.10780 [hep-th].
- G. Penington and E. Witten, “Algebras and States in JT Gravity,” arXiv:2301.07257 [hep-th].
- D. K. Kolchmeyer, “von Neumann algebras in JT gravity,” arXiv:2303.04701 [hep-th].
- M. Takesaki, “Duality for crossed products and the structure of von Neumann algebras of type III,” Acta Mathematica 131 (1973) .
- H. Barnum, E. Knill, G. Ortiz, and L. Viola, “Generalizations of entanglement based on coherent states and convex sets,” Phys. Rev. A 68 (Sep, 2003) 032308.
- H. Barnum, E. Knill, G. Ortiz, R. Somma, and L. Viola, “A Subsystem-Independent Generalization of Entanglement,” Phys. Rev. Lett. 92 (2004) 107902, arXiv:quant-ph/0305023.
- L. Viola and H. Barnum, “Entanglement and subsystems, entanglement beyond subsystems, and all that,” 2007.
- K. Jensen, J. Sorce, and A. Speranza, “Generalized entropy for general subregions in quantum gravity,” arXiv:2306.01837 [hep-th].
- T. Banks and N. Seiberg, “Symmetries and Strings in Field Theory and Gravity,” Phys. Rev. D 83 (2011) 084019, arXiv:1011.5120 [hep-th].
- D. Harlow and H. Ooguri, “Symmetries in quantum field theory and quantum gravity,” Commun. Math. Phys. 383 no. 3, (2021) 1669–1804, arXiv:1810.05338 [hep-th].
- D. Harlow and H. Ooguri, “Constraints on Symmetries from Holography,” Phys. Rev. Lett. 122 no. 19, (2019) 191601, arXiv:1810.05337 [hep-th].
- J. J. Bisognano and E. H. Wichmann, “On the Duality Condition for Quantum Fields,” J. Math. Phys. 17 (1976) 303–321.
- N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space. Cambridge Monographs on Mathematical Physics. Cambridge Univ. Press, Cambridge, UK, 2, 1984.
- G. W. Gibbons and S. W. Hawking, “Action integrals and partition functions in quantum gravity,” Phys. Rev. D 15 (May, 1977) 2752–2756.
- R. Laflamme, “Entropy of a rindler wedge,” Physics Letters B 196 no. 4, (1987) 449–450.
- S. Das, P. Majumdar, and R. K. Bhaduri, “General logarithmic corrections to black hole entropy,” Class. Quant. Grav. 19 (2002) 2355–2368, arXiv:hep-th/0111001.
- K. Papadodimas, “A class of non-equilibrium states and the black hole interior,” arXiv:1708.06328 [hep-th].
- A. C. Wall, “A proof of the generalized second law for rapidly changing fields and arbitrary horizon slices,” Phys. Rev. D 85 (2012) 104049, arXiv:1105.3445 [gr-qc]. [Erratum: Phys.Rev.D 87, 069904 (2013)].
- J. Kirklin, “Subregions, Minimal Surfaces, and Entropy in Semiclassical Gravity,” arXiv:1805.12145 [hep-th].
- M. Banados, C. Teitelboim, and J. Zanelli, “Black hole entropy and the dimensional continuation of the Gauss-Bonnet theorem,” Phys. Rev. Lett. 72 (1994) 957–960, arXiv:gr-qc/9309026.
- S. Carlip and C. Teitelboim, “Aspects of black hole quantum mechanics and thermodynamics in (2+1)-dimensions,” Phys. Rev. D 51 (1995) 622–631, arXiv:gr-qc/9405070.
- H. Casini, M. Huerta, and R. C. Myers, “Towards a derivation of holographic entanglement entropy,” JHEP 05 (2011) 036, arXiv:1102.0440 [hep-th].
- P. D. Hislop and R. Longo, “Modular Structure of the Local Algebras Associated With the Free Massless Scalar Field Theory,” Commun. Math. Phys. 84 (1982) 71.
- R. Longo and G. Morsella, “The massless modular Hamiltonian,” arXiv:2012.00565 [math-ph].
- P. Calabrese and J. L. Cardy, “Entanglement entropy and quantum field theory,” J. Stat. Mech. 0406 (2004) P06002, arXiv:hep-th/0405152.
- P. Calabrese and J. Cardy, “Entanglement entropy and conformal field theory,” J. Phys. A 42 (2009) 504005, arXiv:0905.4013 [cond-mat.stat-mech].
- P. Calabrese and J. L. Cardy, “Entanglement entropy and quantum field theory: A Non-technical introduction,” Int. J. Quant. Inf. 4 (2006) 429, arXiv:quant-ph/0505193.
- C. J. Fewster, “Lectures on quantum energy inequalities,” arXiv:1208.5399 [gr-qc].
- E.-A. Kontou and K. Sanders, “Energy conditions in general relativity and quantum field theory,” Class. Quant. Grav. 37 no. 19, (2020) 193001, arXiv:2003.01815 [gr-qc].
- S. Leutheusser and H. Liu, “Subalgebra-subregion duality: emergence of space and time in holography,” arXiv:2212.13266 [hep-th].
- D. L. Jafferis and S. J. Suh, “The Gravity Duals of Modular Hamiltonians,” JHEP 09 (2016) 068, arXiv:1412.8465 [hep-th].
- D. L. Jafferis, A. Lewkowycz, J. Maldacena, and S. J. Suh, “Relative entropy equals bulk relative entropy,” JHEP 06 (2016) 004, arXiv:1512.06431 [hep-th].
- V. E. Hubeny, M. Rangamani, and T. Takayanagi, “A Covariant holographic entanglement entropy proposal,” JHEP 07 (2007) 062, arXiv:0705.0016 [hep-th].
- V. E. Hubeny and M. Rangamani, “Causal Holographic Information,” JHEP 06 (2012) 114, arXiv:1204.1698 [hep-th].
- M. Headrick, V. E. Hubeny, A. Lawrence, and M. Rangamani, “Causality & holographic entanglement entropy,” JHEP 12 (2014) 162, arXiv:1408.6300 [hep-th].
- B. Freivogel, R. Jefferson, L. Kabir, B. Mosk, and I.-S. Yang, “Casting Shadows on Holographic Reconstruction,” Phys. Rev. D 91 no. 8, (2015) 086013, arXiv:1412.5175 [hep-th].
- N. Engelhardt and A. C. Wall, “No Simple Dual to the Causal Holographic Information?,” JHEP 04 (2017) 134, arXiv:1702.01748 [hep-th].
- A. Hamilton, D. N. Kabat, G. Lifschytz, and D. A. Lowe, “Local bulk operators in AdS/CFT: A Boundary view of horizons and locality,” Phys. Rev. D 73 (2006) 086003, arXiv:hep-th/0506118.
- A. Hamilton, D. N. Kabat, G. Lifschytz, and D. A. Lowe, “Holographic representation of local bulk operators,” Phys. Rev. D 74 (2006) 066009, arXiv:hep-th/0606141.
- S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2, 2023.
- A. Almheiri, X. Dong, and D. Harlow, “Bulk Locality and Quantum Error Correction in AdS/CFT,” JHEP 04 (2015) 163, arXiv:1411.7041 [hep-th].
- J. Camps, “Superselection Sectors of Gravitational Subregions,” JHEP 01 (2019) 182, arXiv:1810.01802 [hep-th].
- B. Czech, J. L. Karczmarek, F. Nogueira, and M. Van Raamsdonk, “Rindler Quantum Gravity,” Class. Quant. Grav. 29 (2012) 235025, arXiv:1206.1323 [hep-th].
- I. A. Morrison, “Boundary-to-bulk maps for AdS causal wedges and the Reeh-Schlieder property in holography,” JHEP 05 (2014) 053, arXiv:1403.3426 [hep-th].
- D. Harlow, “TASI Lectures on the Emergence of Bulk Physics in AdS/CFT,” PoS TASI2017 (2018) 002, arXiv:1802.01040 [hep-th].
- E. Verlinde and K. M. Zurek, “Spacetime Fluctuations in AdS/CFT,” JHEP 04 (2020) 209, arXiv:1911.02018 [hep-th].
- N. Engelhardt, G. Penington, and A. Shahbazi-Moghaddam, “A world without pythons would be so simple,” Class. Quant. Grav. 38 no. 23, (2021) 234001, arXiv:2102.07774 [hep-th].
- A. W. Peet and J. Polchinski, “UV / IR relations in AdS dynamics,” Phys. Rev. D 59 (1999) 065011, arXiv:hep-th/9809022.
- E. D. Bahiru, “Algebra of Operators in AdS-Rindler,” arXiv:2208.04258 [hep-th].
- G. Sárosi and T. Ugajin, “Modular Hamiltonians of excited states, OPE blocks and emergent bulk fields,” JHEP 01 (2018) 012, arXiv:1705.01486 [hep-th].
- N. Lashkari, H. Liu, and S. Rajagopal, “Modular flow of excited states,” JHEP 09 (2021) 166, arXiv:1811.05052 [hep-th].
- T. Ugajin, “Mutual information of excited states and relative entropy of two disjoint subsystems in CFT,” JHEP 10 (2017) 184, arXiv:1611.03163 [hep-th].
- J. Borchers, “Half-sided translations in connection with modular groups as a tool in quantum field theory,” 2009.
- K. Papadodimas and S. Raju, “State-Dependent Bulk-Boundary Maps and Black Hole Complementarity,” Phys. Rev. D 89 no. 8, (2014) 086010, arXiv:1310.6335 [hep-th].
- H.-W. Wiesbrock, “Half-Sided modular inclusions of von-Neumann-Algebras,” Comm. Math. Phys. 157 (10, 1993) 83–92.
- T. Faulkner and A. Lewkowycz, “Bulk locality from modular flow,” JHEP 07 (2017) 151, arXiv:1704.05464 [hep-th].
- M. Van Raamsdonk, “Building up spacetime with quantum entanglement,” Gen. Rel. Grav. 42 (2010) 2323–2329, arXiv:1005.3035 [hep-th].
- N. Lashkari, M. B. McDermott, and M. Van Raamsdonk, “Gravitational dynamics from entanglement ’thermodynamics’,” JHEP 04 (2014) 195, arXiv:1308.3716 [hep-th].
- J. A. Wheeler, “Information, physics, quantum: the search for links,” Proceedings III International Symposium on Foundations of Quantum Mechanics (1989) . https://philpapers.org/archive/WHEIPQ.pdf.
- Graduate Texts in Contemporary Physics. Springer-Verlag, New York, 1997.