The complex heavy quark potential in an anisotropic quark-gluon plasma (2312.07073v1)
Abstract: We present a technique to represent anisotropic heavy-quark potentials as effective potentials. This involves employing an effective screening mass linked to the quantum numbers $l$ and $m$ of a specific state. Our approach utilizes the resulting 1D effective potential model, enabling the solution of a 1D Schr\"odinger equation. Remarkably, this model accurately reproduces the energies and binding energies of low-lying heavy-quarkonium bound states in 3D, including the differentiation of various p-wave polarizations. The derived 1D effective model offers a means to incorporate momentum anisotropy effects into simulations of heavy-quarkonium dynamics in the quark-gluon plasma within open quantum systems.
- J/ψ𝐽𝜓J/\psiitalic_J / italic_ψ Suppression by Quark-Gluon Plasma Formation. Phys. Lett. B 1986, 178, 416–422. https://doi.org/10.1016/0370-2693(86)91404-8.
- Color Screening and Deconfinement for Bound States of Heavy Quarks. Z. Phys. C 1988, 37, 617. https://doi.org/10.1007/BF01549722.
- Real-time static potential in hot QCD. JHEP 2007, 03, 054, [hep-ph/0611300]. https://doi.org/10.1088/1126-6708/2007/03/054.
- Static quark-antiquark pairs at finite temperature. Phys. Rev. D 2008, 78, 014017, [arXiv:hep-ph/0804.0993]. https://doi.org/10.1103/PhysRevD.78.014017.
- Non-relativistic bound states at finite temperature (I): The Hydrogen atom. Phys. Rev. A 2008, 78, 032520, [arXiv:hep-ph/0804.0691]. https://doi.org/10.1103/PhysRevA.78.032520.
- Thermal width and quarkonium dissociation by inelastic parton scattering. JHEP 2013, 05, 130, [arXiv:hep-ph/1303.6097]. https://doi.org/10.1007/JHEP05(2013)130.
- Collective modes of an anisotropic quark gluon plasma. Phys. Rev. D 2003, 68, 036004, [hep-ph/0304092]. https://doi.org/10.1103/PhysRevD.68.036004.
- Strickland, M. Anisotropic Hydrodynamics: Three lectures. Acta Phys. Polon. B 2014, 45, 2355–2394, [arXiv:nucl-th/1410.5786]. https://doi.org/10.5506/APhysPolB.45.2355.
- Thermal Bottomonium Suppression at RHIC and LHC. Nucl. Phys. A 2012, 879, 25–58, [arXiv:nucl-th/1112.2761]. https://doi.org/10.1016/j.nuclphysa.2012.02.003.
- Dissociation of Quarkonium in a Complex Potential. Phys. Rev. D 2014, 89, 094020, [arXiv:hep-ph/1401.0172]. https://doi.org/10.1103/PhysRevD.89.094020.
- Bottomonium suppression and elliptic flow from real-time quantum evolution. Phys. Lett. B 2020, 811, 135949, [arXiv:hep-ph/2007.10211]. https://doi.org/10.1016/j.physletb.2020.135949.
- Bottomonium suppression and elliptic flow using Heavy Quarkonium Quantum Dynamics. JHEP 2020, 21, 235, [arXiv:hep-ph/2010.05457]. https://doi.org/10.1007/JHEP03(2021)235.
- Quarkonium states in an anisotropic QCD plasma. Phys. Rev. D 2009, 79, 054019, [arXiv:hep-ph/0901.1998]. https://doi.org/10.1103/PhysRevD.79.054019.
- Heavy quarkonium dynamics at next-to-leading order in the binding energy over temperature. JHEP 2022, 08, 303, [arXiv:hep-ph/2205.10289]. https://doi.org/10.1007/JHEP08(2022)303.
- QTRAJ 1.0: A Lindblad equation solver for heavy-quarkonium dynamics. Comput. Phys. Commun. 2022, 273, 108266, [arXiv:physics.comp-ph/2107.06147]. https://doi.org/10.1016/j.cpc.2021.108266.
- Effective Debye screening mass in an anisotropic quark gluon plasma. Phys. Rev. D 2021, 104, 096017, [arXiv:hep-ph/2109.01284]. https://doi.org/10.1103/PhysRevD.104.096017.
- The complex heavy-quark potential in an anisotropic quark-gluon plasma — Statics and dynamics. JHEP 2022, 09, 200, [arXiv:hep-ph/2205.10349]. https://doi.org/10.1007/JHEP09(2022)200.
- The effective complex heavy-quark potential in an anisotropic quark-gluon plasma. EPJ Web Conf. 2022, 274, 04015, [arXiv:hep-ph/2210.12102]. https://doi.org/10.1051/epjconf/202227404015.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.