Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Feature Selection for No-Reference Image Quality Assessment by Mitigating Semantic Noise Sensitivity (2312.06158v2)

Published 11 Dec 2023 in cs.CV

Abstract: The current state-of-the-art No-Reference Image Quality Assessment (NR-IQA) methods typically rely on feature extraction from upstream semantic backbone networks, assuming that all extracted features are relevant. However, we make a key observation that not all features are beneficial, and some may even be harmful, necessitating careful selection. Empirically, we find that many image pairs with small feature spatial distances can have vastly different quality scores, indicating that the extracted features may contain a significant amount of quality-irrelevant noise. To address this issue, we propose a Quality-Aware Feature Matching IQA Metric (QFM-IQM) that employs an adversarial perspective to remove harmful semantic noise features from the upstream task. Specifically, QFM-IQM enhances the semantic noise distinguish capabilities by matching image pairs with similar quality scores but varying semantic features as adversarial semantic noise and adaptively adjusting the upstream task's features by reducing sensitivity to adversarial noise perturbation. Furthermore, we utilize a distillation framework to expand the dataset and improve the model's generalization ability. Our approach achieves superior performance to the state-of-the-art NR-IQA methods on eight standard IQA datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.