Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structured Inverse-Free Natural Gradient: Memory-Efficient & Numerically-Stable KFAC (2312.05705v4)

Published 9 Dec 2023 in cs.LG and stat.ML

Abstract: Second-order methods such as KFAC can be useful for neural net training. However, they are often memory-inefficient since their preconditioning Kronecker factors are dense, and numerically unstable in low precision as they require matrix inversion or decomposition. These limitations render such methods unpopular for modern mixed-precision training. We address them by (i) formulating an inverse-free KFAC update and (ii) imposing structures in the Kronecker factors, resulting in structured inverse-free natural gradient descent (SINGD). On modern neural networks, we show that SINGD is memory-efficient and numerically robust, in contrast to KFAC, and often outperforms AdamW even in half precision. Our work closes a gap between first- and second-order methods in modern low-precision training.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com