Papers
Topics
Authors
Recent
Search
2000 character limit reached

Likelihood-Aware Semantic Alignment for Full-Spectrum Out-of-Distribution Detection

Published 4 Dec 2023 in cs.CV | (2312.01732v1)

Abstract: Full-spectrum out-of-distribution (F-OOD) detection aims to accurately recognize in-distribution (ID) samples while encountering semantic and covariate shifts simultaneously. However, existing out-of-distribution (OOD) detectors tend to overfit the covariance information and ignore intrinsic semantic correlation, inadequate for adapting to complex domain transformations. To address this issue, we propose a Likelihood-Aware Semantic Alignment (LSA) framework to promote the image-text correspondence into semantically high-likelihood regions. LSA consists of an offline Gaussian sampling strategy which efficiently samples semantic-relevant visual embeddings from the class-conditional Gaussian distribution, and a bidirectional prompt customization mechanism that adjusts both ID-related and negative context for discriminative ID/OOD boundary. Extensive experiments demonstrate the remarkable OOD detection performance of our proposed LSA especially on the intractable Near-OOD setting, surpassing existing methods by a margin of $15.26\%$ and $18.88\%$ on two F-OOD benchmarks, respectively.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (5)

Collections

Sign up for free to add this paper to one or more collections.

GitHub

  1. GitHub - LuFan31/LSA (5 stars)