Papers
Topics
Authors
Recent
2000 character limit reached

Probing Off-diagonal Eigenstate Thermalization with Tensor Networks

Published 1 Dec 2023 in quant-ph | (2312.00736v3)

Abstract: Energy filter methods in combination with quantum simulation can efficiently access the properties of quantum many-body systems at finite energy densities [Lu et al. PRX Quantum 2, 020321 (2021)]. Classically simulating this algorithm with tensor networks can be used to investigate the microcanonical properties of large spin chains, as recently shown in [Yang et al. Phys. Rev. B 106, 024307 (2022)]. Here we extend this strategy to explore the properties of off-diagonal matrix elements of observables in the energy eigenbasis, fundamentally connected to the thermalization behavior and the eigenstate thermalization hypothesis. We test the method on integrable and non-integrable spin chains of up to 60 sites, much larger than accessible with exact diagonalization. Our results allow us to explore the scaling of the off-diagonal functions with the size and energy difference, and to establish quantitative differences between integrable and non-integrable cases.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. J. v. Neumann, Zeitschrift für Physik 57, 30 (1929).
  2. J.Ā M.Ā Deutsch,Ā Phys. Rev. AĀ 43,Ā 2046 (1991).
  3. M.Ā Srednicki,Ā Journal of Physics A: Mathematical and GeneralĀ 32,Ā 1163 (1999).
  4. J.Ā M.Ā Deutsch,Ā Reports on Progress in PhysicsĀ 81,Ā 082001 (2018).
  5. P.Ā Reimann,Ā Phys. Rev. Lett.Ā 101,Ā 190403 (2008).
  6. P.Ā Reimann,Ā New Journal of PhysicsĀ 17,Ā 055025 (2015).
  7. C.Ā NationĀ andĀ D.Ā Porras,Ā New Journal of PhysicsĀ 20,Ā 103003 (2018).
  8. P.Ā ReimannĀ andĀ L.Ā Dabelow,Ā Phys. Rev. EĀ 103,Ā 022119 (2021).
  9. L.Ā VidmarĀ andĀ M.Ā Rigol,Ā Journal of Statistical Mechanics: Theory and ExperimentĀ 2016,Ā 064007 (2016).
  10. J.-S.Ā CauxĀ andĀ F.Ā H.Ā L.Ā Essler,Ā Phys. Rev. Lett.Ā 110,Ā 257203 (2013).
  11. F.Ā H.Ā L.Ā EsslerĀ andĀ M.Ā Fagotti,Ā Journal of Statistical Mechanics: Theory and ExperimentĀ 2016,Ā 064002 (2016).
  12. F.Ā EsslerĀ andĀ A.Ā deĀ Klerk,Ā arXiv preprint arXiv:2307.12410Ā  (2023).
  13. R.Ā NandkishoreĀ andĀ D.Ā A.Ā Huse,Ā Annu. Rev. Condens. Matter Phys.Ā 6,Ā 15 (2015).
  14. D.Ā J.Ā Luitz, N.Ā Laflorencie,Ā andĀ F.Ā Alet,Ā Physical Review BĀ 91,Ā 081103 (2015).
  15. D.Ā J.Ā LuitzĀ andĀ Y.Ā B.Ā Lev,Ā Annalen der PhysikĀ 529,Ā 1600350 (2017).
  16. M.Ā Rigol, V.Ā Dunjko,Ā andĀ M.Ā Olshanii,Ā NatureĀ 452,Ā 854 (2008).
  17. M.Ā Brenes, J.Ā Goold,Ā andĀ M.Ā Rigol,Ā Phys. Rev. BĀ 102,Ā 075127 (2020b).
  18. R.Ā MondainiĀ andĀ M.Ā Rigol,Ā Phys. Rev. EĀ 96,Ā 012157 (2017).
  19. H.Ā Kim, T.Ā N.Ā Ikeda,Ā andĀ D.Ā A.Ā Huse,Ā Phys. Rev. EĀ 90,Ā 052105 (2014).
  20. M.Ā Rigol,Ā Phys. Rev. Lett.Ā 103,Ā 100403 (2009a).
  21. M.Ā Rigol,Ā Phys. Rev. AĀ 80,Ā 053607 (2009b).
  22. M.Ā MierzejewskiĀ andĀ L.Ā Vidmar,Ā Phys. Rev. Lett.Ā 124,Ā 040603 (2020).
  23. W.Ā Beugeling, R.Ā Moessner,Ā andĀ M.Ā Haque,Ā Phys. Rev. EĀ 91,Ā 012144 (2015).
  24. T.Ā LeBlondĀ andĀ M.Ā Rigol,Ā Phys. Rev. EĀ 102,Ā 062113 (2020).
  25. Y.Ā Zhang, L.Ā Vidmar,Ā andĀ M.Ā Rigol,Ā Phys. Rev. EĀ 106,Ā 014132 (2022).
  26. D.Ā J.Ā LuitzĀ andĀ Y.Ā BarĀ Lev,Ā Phys. Rev. Lett.Ā 117,Ā 170404 (2016).
  27. F.Ā Verstraete, V.Ā Murg,Ā andĀ J.Ā Cirac,Ā Advances in PhysicsĀ 57,Ā 143 (2008),Ā https://doi.org/10.1080/14789940801912366 .
  28. U. Schollwöck, Annals of Physics 326, 96 (2011), january 2011 Special Issue.
  29. S. Lu, M. C. Bañuls, and J. I. Cirac, PRX Quantum 2, 10.1103/PRXQuantum.2.020321 (2021).
  30. Y. Yang, J. I. Cirac, and M. C. Bañuls, Phys. Rev. B 106, 024307 (2022).
  31. R.Ā Nandkishore, S.Ā Gopalakrishnan,Ā andĀ D.Ā A.Ā Huse,Ā Physical Review BĀ 90,Ā 064203 (2014).
  32. S.Ā Johri, R.Ā Nandkishore,Ā andĀ R.Ā Bhatt,Ā Physical review lettersĀ 114,Ā 117401 (2015).
  33. L.Ā FoiniĀ andĀ J.Ā Kurchan,Ā Phys. Rev. EĀ 99,Ā 042139 (2019).
  34. C.Ā MurthyĀ andĀ M.Ā Srednicki,Ā Phys. Rev. Lett.Ā 123,Ā 230606 (2019).
  35. A.Ā Chan, A.Ā DeĀ Luca,Ā andĀ J.Ā T.Ā Chalker,Ā Phys. Rev. Lett.Ā 122,Ā 220601 (2019).
  36. A.Ā DymarskyĀ andĀ H.Ā Liu,Ā Phys. Rev. EĀ 99,Ā 010102 (2019).
  37. M.Ā Hartmann, G.Ā Mahler,Ā andĀ O.Ā Hess,Ā Journal of statistical physicsĀ 119,Ā 1139 (2005).
  38. J.Ā P.Ā Keating, N.Ā Linden,Ā andĀ H.Ā J.Ā Wells,Ā Communications in Mathematical PhysicsĀ 338,Ā 81 (2015).
  39. M. C. Bañuls, D. A. Huse, and J. I. Cirac, Phys. Rev. B 101, 144305 (2020).
  40. Y.Ā Ge, J.Ā Tura,Ā andĀ J.Ā I.Ā Cirac,Ā Journal of Mathematical PhysicsĀ 60,Ā 022202 (2019),Ā https://doi.org/10.1063/1.5027484 .
  41. C.Ā Karrasch, J.Ā H.Ā Bardarson,Ā andĀ J.Ā E.Ā Moore,Ā New Journal of PhysicsĀ 15,Ā 083031 (2013).
  42. T.Ā Barthel,Ā New Journal of PhysicsĀ 15,Ā 073010 (2013).
  43. R.Ā Kubo, M.Ā Yokota,Ā andĀ S.Ā Nakajima,Ā Journal of the Physical Society of JapanĀ 12,Ā 1203 (1957).
  44. P.Ā C.Ā MartinĀ andĀ J.Ā Schwinger,Ā Physical ReviewĀ 115,Ā 1342 (1959).
  45. A.Ā SchuckertĀ andĀ M.Ā Knap,Ā Phys. Rev. Res.Ā 2,Ā 043315 (2020).
  46. J.Ā D.Ā Noh, T.Ā Sagawa,Ā andĀ J.Ā Yeo,Ā Physical Review LettersĀ 125,Ā 050603 (2020).
Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.