Hydrodynamics and the eigenstate thermalization hypothesis (2405.16975v2)
Abstract: The eigenstate thermalization hypothesis (ETH) describes the properties of diagonal and off-diagonal matrix elements of local operators in the eigenenergy basis. In this work, we propose a relation between (i) the singular behaviour of the off-diagonal part of ETH at small energy differences, and (ii) the smooth profile of the diagonal part of ETH as a function of the energy density. We establish this connection from the decay of the autocorrelation functions of local operators, which is constrained by the presence of local conserved quantities whose evolution is described by hydrodynamics. We corroborate our predictions with numerical simulations of two non-integrable spin-1 Ising models, one diffusive and one super-diffusive, which we perform using dynamical quantum typicality up to 18 spins.
- G. Bryan, Elementary principles in statistical mechanics (1902).
- J. v. Neumann, Beweis des ergodensatzes und des h-theorems in der neuen mechanik, Zeitschrift für Physik 57, 30 (1929).
- L. Boltzmann, Weitere studien über das wärmegleichgewicht unter gasmolekülen (1970) pp. 115–225.
- L. Boltzmann, Entgegnung auf die wärmetheoretischen Betrachtungen des Hrn. E. Zermelo (1970) pp. 276–289.
- V. I. Arnold, Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian (2009).
- V. I. Arnold, Small denominators and problems of stability of motion in classical and celestial mechanics, Russian Mathematical Surveys 18, 85 (1963).
- K. Huang, Statistical mechanics (John Wiley & Sons, 2008).
- S. Popescu, A. J. Short, and A. Winter, Entanglement and the foundations of statistical mechanics, Nature Physics 2, 754 (2006).
- F. H. L. Essler and M. Fagotti, Quench dynamics and relaxation in isolated integrable quantum spin chains, Journal of Statistical Mechanics: Theory and Experiment 2016, 064002 (2016).
- L. Vidmar and M. Rigol, Generalized gibbs ensemble in integrable lattice models, Journal of Statistical Mechanics: Theory and Experiment 2016, 064007 (2016).
- M. Srednicki, The approach to thermal equilibrium in quantized chaotic systems, Journal of Physics A: Mathematical and General 32, 1163 (1999).
- J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43, 2046 (1991).
- M. V. Berry, Regular and irregular semiclassical wavefunctions, Journal of Physics A: Mathematical and General 10, 2083 (1977).
- T. Prosen, Statistical properties of matrix elements in a hamilton system between integrability and chaos, Annals of Physics 235, 115 (1994).
- L. Foini and J. Kurchan, Eigenstate thermalization hypothesis and out of time order correlators, Phys. Rev. E 99, 042139 (2019a).
- L. Foini and J. Kurchan, Eigenstate thermalization and rotational invariance in ergodic quantum systems, Phys. Rev. Lett. 123, 260601 (2019b).
- A. Dymarsky, Bound on eigenstate thermalization from transport, Phys. Rev. Lett. 128, 190601 (2022).
- S. Pappalardi, L. Foini, and J. Kurchan, Eigenstate thermalization hypothesis and free probability, Phys. Rev. Lett. 129, 170603 (2022).
- S. Pappalardi, F. Fritzsch, and T. Prosen, General eigenstate thermalization via free cumulants in quantum lattice systems, arXiv preprint arXiv:2303.00713 (2023).
- M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452, 854 (2008).
- M. Rigol, Breakdown of thermalization in finite one-dimensional systems, Phys. Rev. Lett. 103, 100403 (2009).
- L. F. Santos and M. Rigol, Localization and the effects of symmetries in the thermalization properties of one-dimensional quantum systems, Phys. Rev. E 82, 031130 (2010).
- M. Rigol and L. F. Santos, Quantum chaos and thermalization in gapped systems, Phys. Rev. A 82, 011604 (2010).
- G. Biroli, C. Kollath, and A. M. Läuchli, Effect of rare fluctuations on the thermalization of isolated quantum systems, Phys. Rev. Lett. 105, 250401 (2010).
- S. Genway, A. F. Ho, and D. K. K. Lee, Thermalization of local observables in small Hubbard lattices, Phys. Rev. A 86, 023609 (2012).
- W. Beugeling, R. Moessner, and M. Haque, Finite-size scaling of eigenstate thermalization, Phys. Rev. E 89, 042112 (2014).
- W. Beugeling, R. Moessner, and M. Haque, Off-diagonal matrix elements of local operators in many-body quantum systems, Phys. Rev. E 91, 012144 (2015).
- R. Steinigeweg, J. Herbrych, and P. Prelovšek, Eigenstate thermalization within isolated spin-chain systems, Phys. Rev. E 87, 012118 (2013).
- H. Kim, T. N. Ikeda, and D. A. Huse, Testing whether all eigenstates obey the eigenstate thermalization hypothesis, Phys. Rev. E 90, 052105 (2014).
- A. Khodja, R. Steinigeweg, and J. Gemmer, Relevance of the eigenstate thermalization hypothesis for thermal relaxation, Phys. Rev. E 91, 012120 (2015).
- L. P. Kadanoff and P. C. Martin, Hydrodynamic equations and correlation functions, Annals of Physics 24, 419 (1963).
- D. Belitz, T. R. Kirkpatrick, and T. Vojta, How generic scale invariance influences quantum and classical phase transitions, Rev. Mod. Phys. 77, 579 (2005).
- E. Bettelheim, A. G. Abanov, and P. Wiegmann, Nonlinear quantum shock waves in fractional quantum hall edge states, Phys. Rev. Lett. 97, 246401 (2006).
- M. Müller, J. Schmalian, and L. Fritz, Graphene: A nearly perfect fluid, Phys. Rev. Lett. 103, 025301 (2009).
- H. Spohn, Large scale dynamics of interacting particles (Springer Science & Business Media, 2012).
- A. Lucas and K. C. Fong, Hydrodynamics of electrons in graphene, Journal of Physics: Condensed Matter 30, 053001 (2018).
- O. A. Castro-Alvaredo, B. Doyon, and T. Yoshimura, Emergent hydrodynamics in integrable quantum systems out of equilibrium, Phys. Rev. X 6, 041065 (2016).
- J. De Nardis, D. Bernard, and B. Doyon, Diffusion in generalized hydrodynamics and quasiparticle scattering, SciPost Physics 6, 049 (2019).
- B. Doyon, Diffusion and superdiffusion from hydrodynamic projections, Journal of Statistical Physics 186, 25 (2022a).
- H. Araki, Gibbs states of a one dimensional quantum lattice, Communications in Mathematical Physics 14, 120 (1969).
- V. Balachandran and D. Poletti, Relaxation exponents of OTOCs and overlap with local Hamiltonians, Entropy 25, 59 (2022).
- M. Mierzejewski and L. Vidmar, Quantitative impact of integrals of motion on the eigenstate thermalization hypothesis, Phys. Rev. Lett. 124, 040603 (2020).
- C. Murthy and M. Srednicki, Bounds on chaos from the eigenstate thermalization hypothesis, Phys. Rev. Lett. 123, 230606 (2019).
- M. Brenes, J. Goold, and M. Rigol, Low-frequency behavior of off-diagonal matrix elements in the integrable XXZ chain and in a locally perturbed quantum-chaotic XXZ chain, Phys. Rev. B 102, 075127 (2020).
- S. Bochner and K. Chandrasekharan, Fourier transforms, 19 (Princeton University Press, 1949).
- A. Schuckert, I. Lovas, and M. Knap, Nonlocal emergent hydrodynamics in a long-range quantum spin system, Phys. Rev. B 101, 020416 (2020).
- C. Bartsch and J. Gemmer, Dynamical typicality of quantum expectation values, Phys. Rev. Lett. 102, 110403 (2009).
- R. Steinigeweg, J. Gemmer, and W. Brenig, Spin-current autocorrelations from single pure-state propagation, Phys. Rev. Lett. 112, 120601 (2014b).
- L. Cevolani, G. Carleo, and L. Sanchez-Palencia, Protected quasilocality in quantum systems with long-range interactions, Phys. Rev. A 92, 041603 (2015).
- A. Lerose and S. Pappalardi, Origin of the slow growth of entanglement entropy in long-range interacting spin systems, Phys. Rev. Res. 2, 012041 (2020).
- N. Defenu, A. Lerose, and S. Pappalardi, Out-of-equilibrium dynamics of quantum many-body systems with long-range interactions, Physics Reports 1074, 1 (2024).
- V. Alba, Eigenstate thermalization hypothesis and integrability in quantum spin chains, Phys. Rev. B 91, 155123 (2015).
- F. Essler and A. de Klerk, Statistics of matrix elements of local operators in integrable models, arXiv preprint arXiv:2307.12410 (2023).
- A. Nahum, S. Vijay, and J. Haah, Operator spreading in random unitary circuits, Phys. Rev. X 8, 021014 (2018).
- F. Fritzsch and T. Prosen, Eigenstate thermalization in dual-unitary quantum circuits: Asymptotics of spectral functions, Phys. Rev. E 103, 062133 (2021).
- S. Datta, P. Kraus, and B. Michel, Typicality and thermality in 2d CFT, Journal of High Energy Physics 2019, 1 (2019).
- J. Cardy, Thermalization and revivals after a quantum quench in conformal field theory, Phys. Rev. Lett. 112, 220401 (2014).
- T. Rakovszky, F. Pollmann, and C. Von Keyserlingk, Diffusive hydrodynamics of out-of-time-ordered correlators with charge conservation, Phys. Rev. X 8, 031058 (2018).
- V. Khemani, A. Vishwanath, and D. A. Huse, Operator spreading and the emergence of dissipative hydrodynamics under unitary evolution with conservation laws, Phys. Rev. X 8, 031057 (2018).
- D. Bernard and T. Jin, Open quantum symmetric simple exclusion process, Phys. Rev. Lett. 123, 080601 (2019).
- M. C. Bañuls, D. A. Huse, and J. I. Cirac, Entanglement and its relation to energy variance for local one-dimensional hamiltonians, Phys. Rev. B 101, 144305 (2020).
- X. Xu, C. Guo, and D. Poletti, Typicality of nonequilibrium quasi-steady currents, Phys. Rev. A 105, L040203 (2022).
- X. Xu, C. Guo, and D. Poletti, Emergence of steady currents due to strong prethermalization, Phys. Rev. A 107, 022220 (2023).
- A. Browaeys and T. Lahaye, Many-body physics with individually controlled Rydberg atoms, Nat. Phys. 16, 132 (2020).
- B. Doyon, Lecture notes on generalised hydrodynamics, SciPost Physics Lecture Notes , 018 (2020).
- B. Doyon, Hydrodynamic projections and the emergence of linearised euler equations in one-dimensional isolated systems, Communications in Mathematical Physics 391, 293 (2022b).
- O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics (Springer Science & Business Media, 2012).
- T. A. Elsayed and B. V. Fine, Regression relation for pure quantum states and its implications for efficient computing, Phys. Rev. Lett. 110, 070404 (2013).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.