Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attack Detection Using Item Vector Shift in Matrix Factorisation Recommenders (2312.00512v1)

Published 1 Dec 2023 in cs.IR

Abstract: This paper proposes a novel method for detecting shilling attacks in Matrix Factorization (MF)-based Recommender Systems (RS), in which attackers use false user-item feedback to promote a specific item. Unlike existing methods that use either use supervised learning to distinguish between attack and genuine profiles or analyse target item rating distributions to detect false ratings, our method uses an unsupervised technique to detect false ratings by examining shifts in item preference vectors that exploit rating deviations and user characteristics, making it a promising new direction. The experimental results demonstrate the effectiveness of our approach in various attack scenarios, including those involving obfuscation techniques.

Citations (1)

Summary

We haven't generated a summary for this paper yet.