Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Generalized Additive Forecasting Mortality (2311.18698v1)

Published 30 Nov 2023 in stat.AP

Abstract: This study introduces a novel Generalized Additive Mixed Model (GAMM) for mortality modelling, employing mortality covariates $k_t$ and $k_{ct}$ as proposed by Dastranj- Kol\'a\vr (DK-LME). The GAMM effectively predicts age-specific death rates (ASDRs) in both single and multi-population contexts. Empirical evaluations using data from the Human Mortality Database (HMD) demonstrate the model's exceptional performance in accurately capturing observed mortality rates. In the DK-LME model, the relationship between log ASDRs, and $k_t$ did not provide a perfect fit. Our study shows that the GAMM addresses this limitation. Additionally, as discussed in the DK-LME model, ASDRs represent longitudinal data. The GAMM offers a suitable alternative to the DK-LME model for modelling and forecasting mortality rates. We will compare the forecast accuracy of the GAMM with both the DK-LME and Li-Lee models in multi-population scenarios, as well as with LC models in single population scenarios. Comparative analyses highlight the GAMM's superior sample fitting and out-of-sample forecasting performance, positioning it as a promising tool for mortality modelling and forecasting.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube