Generalized Additive Forecasting Mortality (2311.18698v1)
Abstract: This study introduces a novel Generalized Additive Mixed Model (GAMM) for mortality modelling, employing mortality covariates $k_t$ and $k_{ct}$ as proposed by Dastranj- Kol\'a\vr (DK-LME). The GAMM effectively predicts age-specific death rates (ASDRs) in both single and multi-population contexts. Empirical evaluations using data from the Human Mortality Database (HMD) demonstrate the model's exceptional performance in accurately capturing observed mortality rates. In the DK-LME model, the relationship between log ASDRs, and $k_t$ did not provide a perfect fit. Our study shows that the GAMM addresses this limitation. Additionally, as discussed in the DK-LME model, ASDRs represent longitudinal data. The GAMM offers a suitable alternative to the DK-LME model for modelling and forecasting mortality rates. We will compare the forecast accuracy of the GAMM with both the DK-LME and Li-Lee models in multi-population scenarios, as well as with LC models in single population scenarios. Comparative analyses highlight the GAMM's superior sample fitting and out-of-sample forecasting performance, positioning it as a promising tool for mortality modelling and forecasting.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.