Papers
Topics
Authors
Recent
2000 character limit reached

The AutoSPADA Platform: User-Friendly Edge Computing for Distributed Learning and Data Analytics in Connected Vehicles (2311.17621v1)

Published 29 Nov 2023 in cs.DC and cs.NI

Abstract: Contemporary connected vehicles host numerous applications, such as diagnostics and navigation, and new software is continuously being developed. However, the development process typically requires offline batch processing of large data volumes. In an edge computing approach, data analysts and developers can instead process sensor data directly on computational resources inside vehicles. This enables rapid prototyping to shorten development cycles and reduce the time to create new business values or insights. This paper presents the design, implementation, and operation of the AutoSPADA edge computing platform for distributed data analytics. The platform's design follows scalability, reliability, resource efficiency, privacy, and security principles promoted through mature and industrially proven technologies. In AutoSPADA, computational tasks are general Python scripts, and we provide a library to, for example, read signals from the vehicle and publish results to the cloud. Hence, users only need Python knowledge to use the platform. Moreover, the platform is designed to be extended to support additional programming languages.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. doi:10.1109/BigData.2014.7004298.
  2. doi:10.1109/MC.2016.145.
  3. doi:10.1109/JPROC.2019.2920341.
  4. doi:10.1109/COMST.2017.2745201.
  5. doi:10.1561/116.00000063.
  6. doi:10.1109/COMST.2021.3075439.
  7. doi:10.1109/JIOT.2020.2984887.
  8. doi:10.1109/JPROC.2019.2918951.
  9. doi:10.1007/s41019-021-00152-6.
  10. doi:10.1016/j.array.2020.100043.
  11. doi:10.1109/MSPEC.2022.9915547.
  12. doi:10.1145/1238844.1238850.
  13. doi:10.1145/3239332.3242768.
  14. doi:10.1145/2737182.2737185.
  15. doi:10.1145/1953122.1953144.
  16. doi:10.1145/1978915.1978919.
  17. doi:10.1145/3448016.3457551.
  18. doi:10.1145/1294261.1294281.
  19. DB-engines ranking (2023) [cited 2023-07-19]. URL http://web.archive.org/web/20230709014024/https://db-engines.com/en/ranking
  20. doi:10.3390/bdcc7020097.
  21. doi:10.1145/3136014.3136031.
  22. doi:10.1109/SysEng.2017.8088251.
  23. doi:10.1109/JIOT.2022.3155872.
  24. doi:10.1109/SST.2016.7765670.
  25. arXiv:2201.03051.
  26. doi:10.1145/359545.359563.
  27. doi:10.3390/s23084008.
  28. Stream analyze resources (2021) [cited 2023-07-07]. URL https://www.streamanalyze.com/resources
  29. doi:10.1109/SEC.2018.00048.
  30. doi:10.1007/978-1-4842-8882-5_11.
  31. About technology readiness levels (2020) [cited 2023-09-27]. URL https://euraxess.ec.europa.eu/career-development/researchers/manual-scientific-entrepreneurship/major-steps/trl
  32. Precise data for greater safety: NIRA dynamics launches road surface alerts with audi to improve slippery roads warning system (2021) [cited 2023-10-03]. URL https://niradynamics.se/precise-data-for-greater-safety-nira-dynamics-launches-road-surface-alerts-with-audi-to-improve-slippery-roads-warning-system/
  33. doi:10.1109/MCSE.2021.3052101.
  34. doi:10.1038/s41586-020-2649-2.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.