Papers
Topics
Authors
Recent
2000 character limit reached

Utilizing Explainability Techniques for Reinforcement Learning Model Assurance

Published 27 Nov 2023 in cs.LG and cs.AI | (2311.15838v1)

Abstract: Explainable Reinforcement Learning (XRL) can provide transparency into the decision-making process of a Deep Reinforcement Learning (DRL) model and increase user trust and adoption in real-world use cases. By utilizing XRL techniques, researchers can identify potential vulnerabilities within a trained DRL model prior to deployment, therefore limiting the potential for mission failure or mistakes by the system. This paper introduces the ARLIN (Assured RL Model Interrogation) Toolkit, an open-source Python library that identifies potential vulnerabilities and critical points within trained DRL models through detailed, human-interpretable explainability outputs. To illustrate ARLIN's effectiveness, we provide explainability visualizations and vulnerability analysis for a publicly available DRL model. The open-source code repository is available for download at https://github.com/mitre/arlin.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. D. Silver, A. Huang, C. Maddison et al., “Mastering the game of go with deep neural networks and tree search,” Nature, vol. 529, p. 484–489, 2016. [Online]. Available: https://doi.org/10.1038/nature16961
  2. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement learning,” 2013.
  3. A. P. Pope, J. S. Ide, D. Micovic, H. Diaz, D. Rosenbluth, L. Ritholtz, J. C. Twedt, T. T. Walker, K. Alcedo, and D. Javorsek, “Hierarchical reinforcement learning for air-to-air combat,” 2021.
  4. J. Degrave, F. Felici, J. Buchli et al., “Magnetic control of tokamak plasmas through deep reinforcement learning,” Nature, vol. 602, p. 414–419, 2022. [Online]. Available: https://doi.org/10.1038/s41586-021-04301-9
  5. B. Gaudet and R. Furfaro, “Terminal adaptive guidance for autonomous hypersonic strike weapons via reinforcement learning,” 2021.
  6. J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.
  7. A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure, dynamics, and function using networkx,” in Proceedings of the 7th Python in Science Conference, G. Varoquaux, T. Vaught, and J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11 – 15.
  8. S. R. Islam, W. Eberle, S. K. Ghafoor, and M. Ahmed, “Explainable artificial intelligence approaches: A survey,” 2021.
  9. S. Milani, N. Topin, M. Veloso, and F. Fang, “A survey of explainable reinforcement learning,” 2022.
  10. P. Sequeira and M. Gervasio, “Interestingness elements for explainable reinforcement learning: Understanding agents’ capabilities and limitations,” Artificial Intelligence, vol. 288, p. 103367, 2020.
  11. Y. Lan, X. Xu, Q. Fang, Y. Zeng, X. Liu, and X. Zhang, “Transfer reinforcement learning via meta-knowledge extraction using auto-pruned decision trees,” Knowledge-Based Systems, vol. 242, p. 108221, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0950705122000624
  12. N. Baram, T. Zahavy, and S. Mannor, “Deep reinforcement learning discovers internal models,” 2016.
  13. L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of Machine Learning Research, vol. 9, no. 86, pp. 2579–2605, 2008. [Online]. Available: http://jmlr.org/papers/v9/vandermaaten08a.html
  14. D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 603–619, 2002.
  15. D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful seeding,” in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, ser. SODA ’07.   Society for Industrial and Applied Mathematics, 2007, p. 1027–1035.
  16. A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann, “Stable-baselines3: Reliable reinforcement learning implementations,” Journal of Machine Learning Research, vol. 22, no. 268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/v22/20-1364.html
  17. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” 2017.
  18. M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis, G. d. Cola, T. Deleu, M. Goulão, A. Kallinteris, A. KG, M. Krimmel, R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J. Tai, A. T. J. Shen, and O. G. Younis, “Gymnasium,” Mar. 2023. [Online]. Available: https://zenodo.org/record/8127025

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.