Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Safety Assessment of Vehicle Characteristics Variations in Autonomous Driving Systems (2311.14461v1)

Published 24 Nov 2023 in cs.SE

Abstract: Autonomous driving systems (ADSs) must be sufficiently tested to ensure their safety. Though various ADS testing methods have shown promising results, they are limited to a fixed set of vehicle characteristics settings (VCSs). The impact of variations in vehicle characteristics (e.g., mass, tire friction) on the safety of ADSs has not been sufficiently and systematically studied.Such variations are often due to wear and tear, production errors, etc., which may lead to unexpected driving behaviours of ADSs. To this end, in this paper, we propose a method, named SAFEVAR, to systematically find minimum variations to the original vehicle characteristics setting, which affect the safety of the ADS deployed on the vehicle. To evaluate the effectiveness of SAFEVAR, we employed two ADSs and conducted experiments with two driving simulators. Results show that SAFEVAR, equipped with NSGA-II, generates more critical VCSs that put the vehicle into unsafe situations, as compared with two baseline algorithms: Random Search and a mutation-based fuzzer. We also identified critical vehicle characteristics and reported to which extent varying their settings put the ADS vehicles in unsafe situations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Qi Pan (1 paper)
  2. Tiexin Wang (1 paper)
  3. Paolo Arcaini (29 papers)
  4. Tao Yue (37 papers)
  5. Shaukat Ali (51 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.