Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

X-GRL: An Empirical Assessment of Explainable GNN-DRL in B5G/6G Networks (2311.08798v1)

Published 15 Nov 2023 in cs.NI

Abstract: The rapid development of AI techniques has triggered a revolution in beyond fifth-generation (B5G) and upcoming sixth-generation (6G) mobile networks. Despite these advances, efficient resource allocation in dynamic and complex networks remains a major challenge. This paper presents an experimental implementation of deep reinforcement learning (DRL) enhanced with graph neural networks (GNNs) on a real 5G testbed. The method addresses the explainability of GNNs by evaluating the importance of each edge in determining the model's output. The custom sampling functions feed the data into the proposed GNN-driven Monte Carlo policy gradient (REINFORCE) agent to optimize the gNodeB (gNB) radio resources according to the specific traffic demands. The demo demonstrates real-time visualization of network parameters and superior performance compared to benchmarks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.