Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Channel Estimation with Dynamic Metasurface Antennas via Model-Based Learning (2311.08158v1)

Published 14 Nov 2023 in cs.IT, cs.NI, eess.SP, and math.IT

Abstract: Dynamic Metasurface Antenna (DMA) is a cutting-edge antenna technology offering scalable and sustainable solutions for large antenna arrays. The effectiveness of DMAs stems from their inherent configurable analog signal processing capabilities, which facilitate cost-limited implementations. However, when DMAs are used in multiple input multiple output (MIMO) communication systems, they pose challenges in channel estimation due to their analog compression. In this paper, we propose two model-based learning methods to overcome this challenge. Our approach starts by casting channel estimation as a compressed sensing problem. Here, the sensing matrix is formed using a random DMA weighting matrix combined with a spatial gridding dictionary. We then employ the learned iterative shrinkage and thresholding algorithm (LISTA) to recover the sparse channel parameters. LISTA unfolds the iterative shrinkage and thresholding algorithm into a neural network and trains the neural network into a highly efficient channel estimator fitting with the previous channel. As the sensing matrix is crucial to the accuracy of LISTA recovery, we introduce another data-aided method, LISTA-sensing matrix optimization (LISTA-SMO), to jointly optimize the sensing matrix. LISTA-SMO takes LISTA as a backbone and embeds the sensing matrix optimization layers in LISTA's neural network, allowing for the optimization of the sensing matrix along with the training of LISTA. Furthermore, we propose a self-supervised learning technique to tackle the difficulty of acquiring noise-free data. Our numerical results demonstrate that LISTA outperforms traditional sparse recovery methods regarding channel estimation accuracy and efficiency. Besides, LISTA-SMO achieves better channel accuracy than LISTA, demonstrating the effectiveness in optimizing the sensing matrix.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.