Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data assimilation finite element method for the linearized Navier-Stokes equations with higher order polynomial approximation (2301.05600v1)

Published 13 Jan 2023 in math.NA and cs.NA

Abstract: In this article, we design and analyze an arbitrary-order stabilized finite element method to approximate the unique continuation problem for laminar steady flow described by the linearized incompressible Navier--Stokes equation. We derive quantitative local error estimates for the velocity, which account for noise level and polynomial degree, using the stability of the continuous problem in the form of a conditional stability estimate. Numerical examples illustrate the performances of the method with respect to the polynomial order and perturbations in the data. We observe that the higher order polynomials may be efficient for ill-posed problems, but are also more sensitive for problems with poor stability due to the ill-conditioning of the system.

Summary

We haven't generated a summary for this paper yet.