Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiple blowing-up solutions for a slightly critical Lane-Emden system with non-power nonlinearity (2311.04471v1)

Published 8 Nov 2023 in math.AP

Abstract: In this paper, we study the following Lane-Emden system with nearly critical non-power nonlinearity \begin{eqnarray*} \left{ \arraycolsep=1.5pt \begin{array}{lll} -\Delta u =\frac{|v|{p-1}v}{[\ln(e+|v|)]\epsilon}\ \ &{\rm in}\ \Omega, \[2mm] -\Delta v =\frac{|u|{q-1}u}{[\ln(e+|u|)]\epsilon}\ \ &{\rm in}\ \Omega, \[2mm] u= v=0 \ \ & {\rm on}\ \partial\Omega, \end{array} \right. \end{eqnarray*} where $\Omega$ is a bounded smooth domain in $\mathbb{R}N$, $N\geq 3$, $\epsilon>0$ is a small parameter, $p$ and $q $ lying on the critical Sobolev hyperbola $\frac{1}{p+1}+\frac{1}{q+1}=\frac{N-2}{N}$. We construct multiple blowing-up solutions based on the finite dimensional Lyapunov-Schmidt reduction method as $\epsilon$ goes to zero.

Citations (1)

Summary

We haven't generated a summary for this paper yet.