Multiple blowing-up solutions for asymptotically critical Lane-Emden systems on Riemannian manifolds (2311.02844v1)
Abstract: Let $(\mathcal{M},g)$ be a smooth compact Riemannian manifold of dimension $N\geq 8$. We are concerned with the following elliptic system \begin{align*} \left{ \begin{array}{ll} -\Delta_g u+h(x)u=v{p-\alpha \varepsilon}, \ \ &\mbox{in}\ \mathcal{M}, -\Delta_g v+h(x)v=u{q-\beta \varepsilon}, \ \ &\mbox{in}\ \mathcal{M}, u,v>0, \ \ &\mbox{in}\ \mathcal{M}, \end{array} \right. \end{align*} where $\Delta _g=div_g \nabla$ is the Laplace-Beltrami operator on $\mathcal{M}$, $h(x)$ is a $C1$-function on $\mathcal{M}$, $\varepsilon>0$ is a small parameter, $\alpha,\beta>0$ are real numbers, $(p,q)\in (1,+\infty)\times (1,+\infty)$ satisfies $\frac{1}{p+1}+\frac{1}{q+1}=\frac{N-2}{N}$. Using the Lyapunov-Schmidt reduction method, we obtain the existence of multiple blowing-up solutions for the above problem.