Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Deep Learning Techniques for Glaucoma Detection: A Comprehensive Review (2311.01425v1)

Published 2 Nov 2023 in eess.IV, cs.CV, and cs.LG

Abstract: Glaucoma is one of the primary causes of vision loss around the world, necessitating accurate and efficient detection methods. Traditional manual detection approaches have limitations in terms of cost, time, and subjectivity. Recent developments in deep learning approaches demonstrate potential in automating glaucoma detection by detecting relevant features from retinal fundus images. This article provides a comprehensive overview of cutting-edge deep learning methods used for the segmentation, classification, and detection of glaucoma. By analyzing recent studies, the effectiveness and limitations of these techniques are evaluated, key findings are highlighted, and potential areas for further research are identified. The use of deep learning algorithms may significantly improve the efficacy, usefulness, and accuracy of glaucoma detection. The findings from this research contribute to the ongoing advancements in automated glaucoma detection and have implications for improving patient outcomes and reducing the global burden of glaucoma.

Citations (2)

Summary

We haven't generated a summary for this paper yet.