Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Integrated Framework Integrating Monte Carlo Tree Search and Supervised Learning for Train Timetabling Problem (2311.00971v1)

Published 2 Nov 2023 in cs.LG, cs.AI, and cs.CE

Abstract: The single-track railway train timetabling problem (TTP) is an important and complex problem. This article proposes an integrated Monte Carlo Tree Search (MCTS) computing framework that combines heuristic methods, unsupervised learning methods, and supervised learning methods for solving TTP in discrete action spaces. This article first describes the mathematical model and simulation system dynamics of TTP, analyzes the characteristics of the solution from the perspective of MCTS, and proposes some heuristic methods to improve MCTS. This article considers these methods as planners in the proposed framework. Secondly, this article utilizes deep convolutional neural networks to approximate the value of nodes and further applies them to the MCTS search process, referred to as learners. The experiment shows that the proposed heuristic MCTS method is beneficial for solving TTP; The algorithm framework that integrates planners and learners can improve the data efficiency of solving TTP; The proposed method provides a new paradigm for solving TTP.

Citations (2)

Summary

We haven't generated a summary for this paper yet.