Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Structured ambiguity sets for distributionally robust optimization (2310.20657v1)

Published 31 Oct 2023 in math.OC

Abstract: Distributionally robust optimization (DRO) incorporates robustness against uncertainty in the specification of probabilistic models. This paper focuses on mitigating the curse of dimensionality in data-driven DRO problems with optimal transport ambiguity sets. By exploiting independence across lower-dimensional components of the uncertainty, we construct structured ambiguity sets that exhibit a faster shrinkage as the number of collected samples increases. This narrows down the plausible models of the data-generating distribution and mitigates the conservativeness that the decisions of DRO problems over such ambiguity sets may face. We establish statistical guarantees for these structured ambiguity sets and provide dual reformulations of their associated DRO problems for a wide range of objective functions. The benefits of the approach are demonstrated in a numerical example.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.