Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Perturbative Solution to the Linear Influence/Network Autocorrelation Model Under Network Dynamics (2310.20163v1)

Published 31 Oct 2023 in cs.SI, math.ST, and stat.TH

Abstract: Known by many names and arising in many settings, the forced linear diffusion model is central to the modeling of power and influence within social networks (while also serving as the mechanistic justification for the widely used spatial/network autocorrelation models). The standard equilibrium solution to the diffusion model depends on strict timescale separation between network dynamics and attribute dynamics, such that the diffusion network can be considered fixed with respect to the diffusion process. Here, we consider a relaxation of this assumption, in which the network changes only slowly relative to the diffusion dynamics. In this case, we show that one can obtain a perturbative solution to the diffusion model, which depends on knowledge of past states in only a minimal way.

Summary

We haven't generated a summary for this paper yet.