Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Free fermions beyond Jordan and Wigner (2310.19897v3)

Published 30 Oct 2023 in cond-mat.stat-mech, math-ph, math.MP, and quant-ph

Abstract: The Jordan-Wigner transformation is frequently utilised to rewrite quantum spin chains in terms of fermionic operators. When the resulting Hamiltonian is bilinear in these fermions, i.e. the fermions are free, the exact spectrum follows from the eigenvalues of a matrix whose size grows only linearly with the volume of the system. However, several Hamiltonians that do not admit a Jordan-Wigner transformation to fermion bilinears still have the same type of free-fermion spectra. The spectra of such ``free fermions in disguise" models can be found exactly by an intricate but explicit construction of the raising and lowering operators. We generalise the methods further to find a family of such spin chains. We compute the exact spectrum, and generalise an elegant graph-theory construction. We also explain how this family admits an N=2 lattice supersymmetry.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. P. Jordan and E. P. Wigner, “About the Pauli exclusion principle,” Z. Phys. 47 (1928) 631–651.
  2. E. H. Lieb, T. Schultz, and D. Mattis, “Two soluble models of an antiferromagnetic chain,” Annals Phys. 16 (1961) 407–466.
  3. A. Chapman and S. T. Flammia, “Characterization of solvable spin models via graph invariants,” Quantum 4 (2020) 278, arXiv:2003.05465.
  4. M. Ogura, Y. Imamura, N. Kameyama, K. Minami, and M. Sato, “Geometric Criterion for Solvability of Lattice Spin Systems,” Phys. Rev. B 102 (2020) no. 24, 245118, arXiv:2003.13264 [cond-mat.stat-mech].
  5. P. Fendley and K. Schoutens, “Cooper pairs and exclusion statistics from coupled free-fermion chains,” J. Stat. Mech. 2007 (2007) no. 2, 02017, arXiv:cond-mat/0612270 [cond-mat.stat-mech].
  6. E. Witten, “Constraints on supersymmetry breaking,” Nuclear Physics B 202 (1982) no. 2, 253 – 316.
  7. P. Fendley, K. Schoutens, and J. de Boer, “Lattice Models with N=2 Supersymmetry,” Phys. Rev. Lett. 90 (2003) no. 12, 120402, arXiv:hep-th/0210161 [hep-th].
  8. Springer International Publishing, Cham, 2019. arXiv:1710.02658 [cond-mat.stat-mech].
  9. J. de Gier, G. Z. Feher, B. Nienhuis, and M. Rusaczonek, “Integrable supersymmetric chain without particle conservation,” J. Stat. Mech. (2016) 023104, arXiv:1510.02520 [cond-mat.quant-gas].
  10. P. Fendley, “Free fermions in disguise,” Journal of Physics A Mathematical General 52 (2019) no. 33, 335002, arXiv:1901.08078 [cond-mat.stat-mech].
  11. S. J. Elman, A. Chapman, and S. T. Flammia, “Free fermions behind the disguise,” Commun. Math. Phys. 388 (2021) 969–1003, arXiv:2012.07857 [quant-ph].
  12. A. Chapman, S. J. Elman, and R. L. Mann, “A Unified Graph-Theoretic Framework for Free-Fermion Solvability,” arXiv:2305.15625 [quant-ph].
  13. F. C. Alcaraz and R. A. Pimenta, “Free fermionic and parafermionic quantum spin chains with multispin interactions,” Phys. Rev. B 102 (2020) no. 12, 121101, arXiv:2005.14622.
  14. T. Gombor and B. Pozsgay, “Integrable spin chains and cellular automata with medium-range interaction,” Phys. Rev. E 104 (2021) no. 5, 054123, arXiv:2108.02053.
  15. Cambridge University Press, 1993.
  16. M. P. Grabowski and P. Mathieu, “Integrability test for spin chains,” J. Phys. A 28 (1995) no. 17, 4777–4798, arXiv:hep-th/9412039 [hep-th].
  17. M. de Leeuw, A. Pribytok, and P. Ryan, “Classifying two-dimensional integrable spin chains,” J. Phys. A 52 (2019) no. 50, 505201, arXiv:1904.12005 [math-ph].
  18. M. de Leeuw, C. Paletta, A. Pribytok, A. L. Retore, and P. Ryan, “Classifying Nearest-Neighbor Interactions and Deformations of AdS,” Phys. Rev. Lett. 125 (2020) no. 3, 031604, arXiv:2003.04332 [hep-th].
  19. M. de Leeuw, C. Paletta, and B. Pozsgay, “Constructing Integrable Lindblad Superoperators,” Phys. Rev. Lett. 126 (2021) no. 24, 240403, arXiv:2101.08279 [cond-mat.stat-mech].
  20. T. Gombor and B. Pozsgay , to appear.
  21. B. Pozsgay, A. Hutsalyuk, L. Pristyák, and G. Takács, “Sublattice entanglement in an exactly solvable anyonlike spin ladder,” Phys. Rev. E 106 (2022) no. 4, 044120, arXiv:2205.01465 [cond-mat.stat-mech].
  22. P. Fendley, “Free parafermions,” J. Phys. A 47 (2014) no. 7, 075001, arXiv:1310.6049 [cond-mat.stat-mech].
  23. F. C. Alcaraz and R. A. Pimenta, “Integrable quantum spin chains with free fermionic and parafermionic spectrum,” Phys. Rev. B 102 (2021) no. 23, 235170, arXiv:2010.01116 [cond-mat.stat-mech].
  24. F. C. Alcaraz, J. A. Hoyos, and R. A. Pimenta, “A random free-fermion quantum spin chain with multi-spin interactions,” arXiv:2308.16249 [cond-mat.dis-nn].
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.