Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Exact Solutions and Degenerate Properties of Spin Chains with Reducible Hamiltonians (1804.00147v3)

Published 31 Mar 2018 in cond-mat.str-el, cond-mat.stat-mech, math-ph, and math.MP

Abstract: The Jordan--Wigner transformation plays an important role in spin models. However, the non-locality of the transformation implies that a periodic chain of $N$ spins is not mapped to a periodic or an anti-periodic chain of lattice fermions. Since only the $N-1$ bond is different, the effect is negligible for large systems, while it is significant for small systems. In this paper, it is interesting to find that a class of periodic spin chains can be exactly mapped to a periodic chain and an anti-periodic chain of lattice fermions without redundancy when the Jordan--Wigner transformation is implemented. For these systems, possible high degeneracy is found to appear in not only the ground state but also the excitation states. Further, we take the one-dimensional compass model and a new XY-XY model ($\sigma_x\sigma_y-\sigma_x\sigma_y$) as examples to demonstrate our proposition. Except for the well-known one-dimensional compass model, we will see that in the XY-XY model, the degeneracy also grows exponentially with the number of sites.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.