Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RSM-NLP at BLP-2023 Task 2: Bangla Sentiment Analysis using Weighted and Majority Voted Fine-Tuned Transformers (2310.14261v1)

Published 22 Oct 2023 in cs.CL, cs.AI, and cs.LG

Abstract: This paper describes our approach to submissions made at Shared Task 2 at BLP Workshop - Sentiment Analysis of Bangla Social Media Posts. Sentiment Analysis is an action research area in the digital age. With the rapid and constant growth of online social media sites and services and the increasing amount of textual data, the application of automatic Sentiment Analysis is on the rise. However, most of the research in this domain is based on the English language. Despite being the world's sixth most widely spoken language, little work has been done in Bangla. This task aims to promote work on Bangla Sentiment Analysis while identifying the polarity of social media content by determining whether the sentiment expressed in the text is Positive, Negative, or Neutral. Our approach consists of experimenting and finetuning various multilingual and pre-trained BERT-based models on our downstream tasks and using a Majority Voting and Weighted ensemble model that outperforms individual baseline model scores. Our system scored 0.711 for the multiclass classification task and scored 10th place among the participants on the leaderboard for the shared task. Our code is available at https://github.com/ptnv-s/RSM-NLP-BLP-Task2 .

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Pratinav Seth (16 papers)
  2. Rashi Goel (1 paper)
  3. Komal Mathur (1 paper)
  4. Swetha Vemulapalli (1 paper)
Citations (1)

Summary

We haven't generated a summary for this paper yet.