Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Search for non-resonant Higgs boson pair production in the $2b + 2\ell + E_\mathrm{T}^\mathrm{miss}$ final state in $pp$ collisions $\sqrt{s} = 13\,\mathrm{TeV}$ with the ATLAS detector (2310.11286v2)

Published 17 Oct 2023 in hep-ex

Abstract: A search for non-resonant Higgs boson pair ($HH$) production is presented, in which one of the Higgs bosons decays to a b-quark pair ($b\bar b$) and the other decays to $WW*$, $ZZ*$, or $\tau+\tau-$, with in each case a final state with $\ell+\ell- +$ neutrinos ($\ell = e, \mu$). The analysis targets separately the gluon-gluon fusion and vector boson fusion production modes. Data recorded by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of $140\mathrm{fb}{-1}$, are used in this analysis. Events are selected to have exactly two $b$-tagged jets and two leptons with opposite electric charge and missing transverse momentum in the final state. These events are classified using multivariate analysis algorithms to separate the $HH$ events from other Standard Model processes. No evidence of the signal is found. The observed (expected) upper limit on the cross-section for non-resonant Higgs boson pair production is determined to be 9.7 (16.2) times the Standard Model prediction at 95% confidence level. The Higgs boson self-interaction coupling parameter $\kappa_\lambda$ and the quadrilinear coupling parameter $\kappa_{2V}$ are each separately constrained by this analysis to be within the ranges ${[-6.2, 13.3]}$ and ${[-0.17, 2.4]}$, respectively, at 95% confidence level, when all other parameters are fixed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (144)
  1. “Broken Symmetry and the Mass of Gauge Vector Mesons” In Phys. Rev. Lett. 13, 1964, pp. 321–323 DOI: 10.1103/PhysRevLett.13.321
  2. Peter W. Higgs “Broken symmetries, massless particles and gauge fields” In Phys. Lett. 12, 1964, pp. 132–133 DOI: 10.1016/0031-9163(64)91136-9
  3. Peter W. Higgs “Broken Symmetries and the Masses of Gauge Bosons” In Phys. Rev. Lett. 13, 1964, pp. 508–509 DOI: 10.1103/PhysRevLett.13.508
  4. G.S. Guralnik, C.R. Hagen and T.W.B. Kibble “Global Conservation Laws and Massless Particles” In Phys. Rev. Lett. 13, 1964, pp. 585–587 DOI: 10.1103/PhysRevLett.13.585
  5. Peter W. Higgs “Spontaneous Symmetry Breakdown without Massless Bosons” In Phys. Rev. 145, 1966, pp. 1156–1163 DOI: 10.1103/PhysRev.145.1156
  6. T.W.B. Kibble “Symmetry Breaking in Non-Abelian Gauge Theories” In Phys. Rev. 155, 1967, pp. 1554–1561 DOI: 10.1103/PhysRev.155.1554
  7. ATLAS Collaboration “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC” In Phys. Lett. B 716, 2012, pp. 1 DOI: 10.1016/j.physletb.2012.08.020
  8. CMS Collaboration “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC” In Phys. Lett. B 716, 2012, pp. 30 DOI: 10.1016/j.physletb.2012.08.021
  9. S. Dawson, S. Dittmaier and M. Spira “Neutral Higgs boson pair production at hadron colliders: QCD corrections” In Phys. Rev. D 58, 1998, pp. 115012 DOI: 10.1103/PhysRevD.58.115012
  10. “Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence” [Erratum: Phys.Rev.Lett. 117, 079901 (2016)] In Phys. Rev. Lett. 117.1, 2016, pp. 012001 DOI: 10.1103/PhysRevLett.117.079901
  11. “Gluon fusion into Higgs pairs at NLO QCD and the top mass scheme” In Eur. Phys. J. C 79.6, 2019, pp. 459 DOI: 10.1140/epjc/s10052-019-6973-3
  12. “Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD” In Phys. Rev. Lett. 111, 2013, pp. 201801 DOI: 10.1103/PhysRevLett.111.201801
  13. “Threshold resummation effects in Higgs boson pair production at the LHC” In JHEP 07, 2013, pp. 169 DOI: 10.1007/JHEP07(2013)169
  14. “Higgs pair production at next-to-next-to-leading logarithmic accuracy at the LHC” In JHEP 09, 2015, pp. 053 DOI: 10.1007/JHEP09(2015)053
  15. “Higgs boson pair production at NNLO with top quark mass effects” In JHEP 05, 2018, pp. 059 DOI: 10.1007/JHEP05(2018)059
  16. “g⁢g→H⁢H→𝑔𝑔𝐻𝐻gg\rightarrow HHitalic_g italic_g → italic_H italic_H: Combined uncertainties” In Phys. Rev. D 103.5, 2021, pp. 056002 DOI: 10.1103/PhysRevD.103.056002
  17. Frédéric A. Dreyer and Alexander Karlberg “Vector-Boson Fusion Higgs Pair Production at N33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPTLO” In Phys. Rev. D 98.11, 2018, pp. 114016 DOI: 10.1103/PhysRevD.98.114016
  18. Luca Di Luzio, Ramona Gröber and Michael Spannowsky “Maxi-sizing the trilinear Higgs self-coupling: how large could it be?” In Eur. Phys. J. C 77.11, 2017, pp. 788 DOI: 10.1140/epjc/s10052-017-5361-0
  19. “Electroweak oblique parameters as a probe of the trilinear Higgs boson self-interaction” In Phys. Rev. D 95.9, 2017, pp. 093004 DOI: 10.1103/PhysRevD.95.093004
  20. ATLAS Collaboration “Search for Higgs boson pair production in the two bottom quarks plus two photons final state in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Phys. Rev. D 106, 2021, pp. 052001 DOI: 10.1103/PhysRevD.106.052001
  21. ATLAS Collaboration “Search for resonant pair production of Higgs bosons in the b⁢b¯⁢b⁢b¯𝑏¯𝑏𝑏¯𝑏b\bar{b}b\bar{b}italic_b over¯ start_ARG italic_b end_ARG italic_b over¯ start_ARG italic_b end_ARG final state using p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Phys. Rev. D 105, 2022, pp. 092002 DOI: 10.1103/PhysRevD.105.092002
  22. ATLAS Collaboration “Search for resonant and non-resonant Higgs boson pair production in the b⁢b¯⁢τ+⁢τ−𝑏¯𝑏superscript𝜏superscript𝜏b\bar{b}\tau^{+}\tau^{-}italic_b over¯ start_ARG italic_b end_ARG italic_τ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT decay channel using 13⁢TeV13TeV13\,\text{TeV}13 TeV p⁢p𝑝𝑝ppitalic_p italic_p collision data from the ATLAS detector” In JHEP 07, 2022, pp. 040 DOI: 10.1007/JHEP07(2023)040
  23. ATLAS Collaboration “Constraining the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Phys. Lett. B 843, 2022, pp. 137745 DOI: 10.1016/j.physletb.2023.137745
  24. CMS Collaboration “Search for Higgs Boson Pair Production in the Four b𝑏bitalic_b Quark Final State in Proton–Proton Collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Phys. Rev. Lett. 129, 2022, pp. 081802 DOI: 10.1103/PhysRevLett.129.081802
  25. CMS Collaboration “Search for nonresonant pair production of highly energetic Higgs bosons decaying to bottom quarks” In Phys. Rev. Lett. 131, 2023, pp. 041803 DOI: 10.1103/PhysRevLett.131.041803
  26. CMS Collaboration “Search for nonresonant Higgs boson pair production in final state with two bottom quarks and two tau leptons in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Phys. Lett. B 842, 2022, pp. 137531 DOI: 10.1016/j.physletb.2022.137531
  27. CMS Collaboration “Search for Higgs boson pairs decaying to W⁢W*⁢W⁢W*𝑊superscript𝑊𝑊superscript𝑊WW^{*}WW^{*}italic_W italic_W start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_W italic_W start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT, W⁢W*⁢τ⁢τ𝑊superscript𝑊𝜏𝜏WW^{*}\tau\tauitalic_W italic_W start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_τ italic_τ, and τ⁢τ⁢τ⁢τ𝜏𝜏𝜏𝜏\tau\tau\tau\tauitalic_τ italic_τ italic_τ italic_τ in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In JHEP 07, 2022, pp. 095 DOI: 10.1007/JHEP07(2023)095
  28. CMS Collaboration “Search for nonresonant Higgs boson pair production in final states with two bottom quarks and two photons in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In JHEP 03, 2021, pp. 257 DOI: 10.1007/JHEP03(2021)257
  29. CMS Collaboration “Search for nonresonant Higgs boson pair production in the four leptons plus two b𝑏bitalic_b jets final state in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In JHEP 06, 2022, pp. 130 DOI: 10.1007/JHEP06(2023)130
  30. CMS Collaboration “A portrait of the Higgs boson by the CMS experiment ten years after the discovery” In Nature 607, 2022, pp. 60–68 DOI: 10.1038/s41586-022-04892-x
  31. ATLAS Collaboration “Search for non-resonant Higgs boson pair production in the b⁢b⁢ℓ⁢ν⁢ℓ⁢ν𝑏𝑏ℓ𝜈ℓ𝜈bb\ell\nu\ell\nuitalic_b italic_b roman_ℓ italic_ν roman_ℓ italic_ν final state with the ATLAS detector in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Phys. Lett. B 801, 2020, pp. 135145 DOI: 10.1016/j.physletb.2019.135145
  32. ATLAS Collaboration “The ATLAS Experiment at the CERN Large Hadron Collider” In JINST 3, 2008, pp. S08003 DOI: 10.1088/1748-0221/3/08/S08003
  33. ATLAS Collaboration “ATLAS Insertable B-Layer: Technical Design Report”, 2010 URL: https://cds.cern.ch/record/1291633
  34. B. Abbott “Production and integration of the ATLAS Insertable B-Layer” In JINST 13, 2018, pp. T05008 DOI: 10.1088/1748-0221/13/05/T05008
  35. ATLAS Collaboration “Performance of the ATLAS trigger system in 2015” In Eur. Phys. J. C 77, 2017, pp. 317 DOI: 10.1140/epjc/s10052-017-4852-3
  36. ATLAS Collaboration “The ATLAS Collaboration Software and Firmware”, ATL-SOFT-PUB-2021-001, 2021 URL: https://cds.cern.ch/record/2767187
  37. ATLAS Collaboration “ATLAS data quality operations and performance for 2015–2018 data-taking” In JINST 15, 2020, pp. P04003 DOI: 10.1088/1748-0221/15/04/P04003
  38. ATLAS Collaboration “Luminosity determination in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV using the ATLAS detector at the LHC” In Eur. Phys. J. C 83, 2023, pp. 982 DOI: 10.1140/epjc/s10052-023-11747-w
  39. ATLAS Collaboration “The ATLAS Simulation Infrastructure” In Eur. Phys. J. C 70, 2010, pp. 823 DOI: 10.1140/epjc/s10052-010-1429-9
  40. S. Agostinelli “Geant4 – a simulation toolkit” In Nucl. Instrum. Meth. A 506, 2003, pp. 250 DOI: 10.1016/S0168-9002(03)01368-8
  41. T. Sjöstrand, S. Mrenna and P. Skands “A brief introduction to PYTHIA 8.1” In Comput. Phys. Commun. 178, 2008, pp. 852–867 DOI: 10.1016/j.cpc.2008.01.036
  42. NNPDF Collaboration and Richard D. Ball “Parton distributions with LHC data” In Nucl. Phys. B 867, 2013, pp. 244 DOI: 10.1016/j.nuclphysb.2012.10.003
  43. ATLAS Collaboration “The Pythia 8 A3 tune description of ATLAS minimum bias and inelastic measurements incorporating the Donnachie–Landshoff diffractive model”, ATL-PHYS-PUB-2016-017, 2016 URL: https://cds.cern.ch/record/2206965
  44. “An introduction to PYTHIA 8.2” In Comput. Phys. Commun. 191, 2015, pp. 159 DOI: 10.1016/j.cpc.2015.01.024
  45. Jon Butterworth “PDF4LHC recommendations for LHC Run II” In J. Phys. G 43, 2016, pp. 023001 DOI: 10.1088/0954-3899/43/2/023001
  46. ATLAS Collaboration “ATLAS Pythia 8 tunes to 7⁢TeV7TeV7\leavevmode\nobreak\ \text{TeV}7 TeV data”, ATL-PHYS-PUB-2014-021, 2014 URL: https://cds.cern.ch/record/1966419
  47. Johannes Bellm “Herwig 7.2 release note” In Eur. Phys. J. C 80.5, 2020, pp. 452 DOI: 10.1140/epjc/s10052-020-8011-x
  48. ATLAS Collaboration “Combination of searches for Higgs boson pairs in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Phys. Lett. B 800, 2020, pp. 135103 DOI: 10.1016/j.physletb.2019.135103
  49. ATLAS Collaboration “Validation of signal Monte Carlo event generation in searches for Higgs boson pairs with the ATLAS detector”, ATL-PHYS-PUB-2019-007, 2019 URL: https://cds.cern.ch/record/2665057
  50. “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations” In JHEP 07, 2014, pp. 079 DOI: 10.1007/JHEP07(2014)079
  51. The NNPDF Collaboration and Richard D. Ball “Parton distributions for the LHC run II” In JHEP 04, 2015, pp. 040 DOI: 10.1007/JHEP04(2015)040
  52. Fady Bishara, Roberto Contino and Juan Rojo “Higgs pair production in vector-boson fusion at the LHC and beyond” In Eur. Phys. J. C 77.7, 2017, pp. 481 DOI: 10.1140/epjc/s10052-017-5037-9
  53. D.J. Lange “The EvtGen particle decay simulation package” In Proceedings, 7th International Conference on B physics at hadron machines (BEAUTY 2000) 462, 2001, pp. 152 DOI: 10.1016/S0168-9002(01)00089-4
  54. ATLAS Collaboration “Probing the Quantum Interference between Singly and Doubly Resonant Top-Quark Production in p⁢p𝑝𝑝ppitalic_p italic_p Collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS Detector” In Phys. Rev. Lett. 121, 2018, pp. 152002 DOI: 10.1103/PhysRevLett.121.152002
  55. “Single-top hadroproduction in association with a W𝑊Witalic_W boson” In JHEP 07, 2008, pp. 029 DOI: 10.1088/1126-6708/2008/07/029
  56. Stefano Frixione, Giovanni Ridolfi and Paolo Nason “A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction” In JHEP 09, 2007, pp. 126 DOI: 10.1088/1126-6708/2007/09/126
  57. Paolo Nason “A new method for combining NLO QCD with shower Monte Carlo algorithms” In JHEP 11, 2004, pp. 040 DOI: 10.1088/1126-6708/2004/11/040
  58. Stefano Frixione, Paolo Nason and Carlo Oleari “Matching NLO QCD computations with parton shower simulations: the POWHEG method” In JHEP 11, 2007, pp. 070 DOI: 10.1088/1126-6708/2007/11/070
  59. “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX” In JHEP 06, 2010, pp. 043 DOI: 10.1007/JHEP06(2010)043
  60. ATLAS Collaboration “Studies on top-quark Monte Carlo modelling for Top2016”, ATL-PHYS-PUB-2016-020, 2016 URL: https://cds.cern.ch/record/2216168
  61. Leonid Serkin “Treatment of top-quark backgrounds in extreme phase spaces: the “top pTsubscript𝑝𝑇p_{T}italic_p start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT reweighting” and novel data-driven estimations in ATLAS and CMS” In 13th International Workshop on Top Quark Physics, Proceeding for 13th International Workshop on Top Quark Physics, 2021 arXiv:2105.03977 [hep-ex]
  62. Emanuele Re “Single-top W⁢t𝑊𝑡Wtitalic_W italic_t-channel production matched with parton showers using the POWHEG method” In Eur. Phys. J. C 71, 2011, pp. 1547 DOI: 10.1140/epjc/s10052-011-1547-z
  63. Enrico Bothmann “Event generation with Sherpa 2.2” In SciPost Phys. 7.3, 2019, pp. 034 DOI: 10.21468/SciPostPhys.7.3.034
  64. Leif Lönnblad “Correcting the Colour-Dipole Cascade Model with Fixed Order Matrix Elements” In JHEP 05, 2002, pp. 046 DOI: 10.1088/1126-6708/2002/05/046
  65. “W+jets matrix elements and the dipole cascade” In JHEP 07, 2005, pp. 054 DOI: 10.1088/1126-6708/2005/07/054
  66. “Comix, a new matrix element generator” In JHEP 12, 2008, pp. 039 DOI: 10.1088/1126-6708/2008/12/039
  67. Fabio Cascioli, Philipp Maierhöfer and Stefano Pozzorini “Scattering Amplitudes with Open Loops” In Phys. Rev. Lett. 108, 2012, pp. 111601 DOI: 10.1103/PhysRevLett.108.111601
  68. “QCD matrix elements + parton showers. The NLO case” In JHEP 04, 2013, pp. 027 DOI: 10.1007/JHEP04(2013)027
  69. A. Djouadi, J. Kalinowski and M. Spira “HDECAY: A program for Higgs boson decays in the Standard Model and its supersymmetric extension” In Comput. Phys. Commun. 108, 1998, pp. 56 DOI: 10.1016/S0010-4655(97)00123-9
  70. Michael Spira “QCD Effects in Higgs Physics” In Fortsch. Phys. 46, 1998, pp. 203–284 DOI: 10.1002/(SICI)1521-3978(199804)46:3<203::AID-PROP203>3.0.CO;2-4
  71. A. Djouadi, M.M. Mühlleitner and M. Spira “Decays of Supersymmetric particles: The Program SUSY-HIT (SUspect-SdecaY-Hdecay-InTerface)” In Proceedings, Physics at LHC, 3rd Conference 38, 2007, pp. 635–644 arXiv:hep-ph/0609292
  72. “Radiative corrections to the semileptonic and hadronic Higgs-boson decays H→W⁢W/Z⁢Z→4→𝐻𝑊𝑊𝑍𝑍→4H\to WW/ZZ\to 4italic_H → italic_W italic_W / italic_Z italic_Z → 4 fermions” In JHEP 02, 2007, pp. 080 DOI: 10.1088/1126-6708/2007/02/080
  73. “Precise predictions for the Higgs-boson decay H→W⁢W/Z⁢Z→4→𝐻𝑊𝑊𝑍𝑍→4H\to WW/ZZ\to 4italic_H → italic_W italic_W / italic_Z italic_Z → 4 leptons” In Phys. Rev. D 74, 2006, pp. 013004 DOI: 10.1103/PhysRevD.74.013004
  74. “Precision calculations for the Higgs decays H→Z⁢Z/W⁢W→4→𝐻𝑍𝑍𝑊𝑊→4H\to ZZ/WW\to 4italic_H → italic_Z italic_Z / italic_W italic_W → 4 leptons” In Proceedings, 8th DESY Workshop on Elementary Particle Theory: Loops and Legs in Quantum Field Theory 160, 2006, pp. 131–135 DOI: 10.1016/j.nuclphysbps.2006.09.104
  75. “NNLOPS simulation of Higgs boson production” In JHEP 10, 2013, pp. 222 DOI: 10.1007/JHEP10(2013)222
  76. Keith Hamilton, Paolo Nason and Giulia Zanderighi “Finite quark-mass effects in the NNLOPS POWHEG+MiNLO Higgs generator” In JHEP 05, 2015, pp. 140 DOI: 10.1007/JHEP05(2015)140
  77. Keith Hamilton, Paolo Nason and Giulia Zanderighi “MINLO: multi-scale improved NLO” In JHEP 10, 2012, pp. 155 DOI: 10.1007/JHEP10(2012)155
  78. “NLO Higgs boson production plus one and two jets using the POWHEG BOX, MadGraph4 and MCFM” In JHEP 07, 2012, pp. 092 DOI: 10.1007/JHEP07(2012)092
  79. “Merging H/W/Z + 0 and 1 jet at NLO with no merging scale: a path to parton shower + NNLO matching” In JHEP 05, 2013, pp. 082 DOI: 10.1007/JHEP05(2013)082
  80. “Next-to-Next-to-Leading-Order Subtraction Formalism in Hadron Collisions and its Application to Higgs-boson Production at the Large Hadron Collider” In Phys. Rev. Lett. 98, 2007, pp. 222002 DOI: 10.1103/PhysRevLett.98.222002
  81. ATLAS Collaboration “Measurement of the Z/γ*𝑍superscript𝛾Z/\gamma^{*}italic_Z / italic_γ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT boson transverse momentum distribution in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=7⁢TeV𝑠7TeV\sqrt{s}=7\,\text{TeV}square-root start_ARG italic_s end_ARG = 7 TeV with the ATLAS detector” In JHEP 09, 2014, pp. 145 DOI: 10.1007/JHEP09(2014)145
  82. D. Florian “Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector” In CERN Yellow Reports 2, 2017 DOI: 10.23731/CYRM-2017-002
  83. “High precision determination of the gluon fusion Higgs boson cross-section at the LHC” In JHEP 05, 2016, pp. 058 DOI: 10.1007/JHEP05(2016)058
  84. “Higgs Boson Gluon-Fusion Production in QCD at Three Loops” In Phys. Rev. Lett. 114, 2015, pp. 212001 DOI: 10.1103/PhysRevLett.114.212001
  85. Falko Dulat, Achilleas Lazopoulos and Bernhard Mistlberger “iHixs 2 – Inclusive Higgs cross sections” In Comput. Phys. Commun. 233, 2018, pp. 243–260 DOI: 10.1016/j.cpc.2018.06.025
  86. Robert V. Harlander and Kemal J. Ozeren “Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order” In JHEP 11, 2009, pp. 088 DOI: 10.1088/1126-6708/2009/11/088
  87. Robert V. Harlander and Kemal J. Ozeren “Top mass effects in Higgs production at next-to-next-to-leading order QCD: Virtual corrections” In Phys. Lett. B 679, 2009, pp. 467–472 DOI: 10.1016/j.physletb.2009.08.012
  88. “Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass” In Eur. Phys. J. C 66, 2010, pp. 359–372 DOI: 10.1140/epjc/s10052-010-1258-x
  89. Alexey Pak, Mikhail Rogal and Matthias Steinhauser “Finite top quark mass effects in NNLO Higgs boson production at LHC” In JHEP 02, 2010, pp. 025 DOI: 10.1007/JHEP02(2010)025
  90. “NLO electroweak corrections to Higgs boson production at hadron colliders” In Phys. Lett. B 670, 2008, pp. 12–17 DOI: 10.1016/j.physletb.2008.10.018
  91. “NNLO computational techniques: The cases H→γ⁢γ→𝐻𝛾𝛾H\to\gamma\gammaitalic_H → italic_γ italic_γ and H→g⁢g→𝐻𝑔𝑔H\to ggitalic_H → italic_g italic_g” In Nucl. Phys. B 811, 2009, pp. 182–273 DOI: 10.1016/j.nuclphysb.2008.11.024
  92. Marco Bonetti, Kirill Melnikov and Lorenzo Tancredi “Higher order corrections to mixed QCD-EW contributions to Higgs boson production in gluon fusion” In Phys. Rev. D 97.5, 2018, pp. 056017 DOI: 10.1103/PhysRevD.97.056017
  93. “NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG” In JHEP 02, 2010, pp. 037 DOI: 10.1007/JHEP02(2010)037
  94. M. Ciccolini, Ansgar Denner and S. Dittmaier “Strong and Electroweak Corrections to the Production of a Higgs Boson + 2 Jets via Weak Interactions at the Large Hadron Collider” In Phys. Rev. Lett. 99, 2007, pp. 161803 DOI: 10.1103/PhysRevLett.99.161803
  95. Mariano Ciccolini, Ansgar Denner and Stefan Dittmaier “Electroweak and QCD corrections to Higgs production via vector-boson fusion at the CERN LHC” In Phys. Rev. D 77, 2008, pp. 013002 DOI: 10.1103/PhysRevD.77.013002
  96. “Higgs Boson Production via Vector-Boson Fusion at Next-to-Next-to-Leading Order in QCD” In Phys. Rev. Lett. 105, 2010, pp. 011801 DOI: 10.1103/PhysRevLett.105.011801
  97. M.L. Ciccolini, S. Dittmaier and M. Krämer “Electroweak radiative corrections to associated W⁢H𝑊𝐻WHitalic_W italic_H and Z⁢H𝑍𝐻ZHitalic_Z italic_H production at hadron colliders” In Phys. Rev. D 68, 2003, pp. 073003 DOI: 10.1103/PhysRevD.68.073003
  98. Oliver Brein, Abdelhak Djouadi and Robert Harlander “NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders” In Phys. Lett. B 579, 2004, pp. 149–156 DOI: 10.1016/j.physletb.2003.10.112
  99. “Top-quark mediated effects in hadronic Higgs-Strahlung” In Eur. Phys. J. C 72, 2012, pp. 1868 DOI: 10.1140/epjc/s10052-012-1868-6
  100. “Gluon-induced Higgs-strahlung at next-to-leading order QCD” In JHEP 02, 2013, pp. 078 DOI: 10.1007/JHEP02(2013)078
  101. “HAWK 2.0: A Monte Carlo program for Higgs production in vector-boson fusion and Higgs strahlung at hadron colliders” In Comput. Phys. Commun. 195, 2015, pp. 161–171 DOI: 10.1016/j.cpc.2015.04.021
  102. Oliver Brein, Robert V. Harlander and Tom J.E. Zirke “vh@nnlo – Higgs Strahlung at hadron colliders” In Comput. Phys. Commun. 184, 2013, pp. 998–1003 DOI: 10.1016/j.cpc.2012.11.002
  103. “Soft gluon resummation for gluon-induced Higgs Strahlung” In JHEP 11, 2014, pp. 082 DOI: 10.1007/JHEP11(2014)082
  104. “Higgs boson production in association with top quarks in the POWHEG BOX” In Phys. Rev. D 91.9, 2015, pp. 094003 DOI: 10.1103/PhysRevD.91.094003
  105. ATLAS Collaboration “Vertex Reconstruction Performance of the ATLAS Detector at s=13⁢TeV𝑠13TeV\sqrt{s}=13\leavevmode\nobreak\ \text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV”, ATL-PHYS-PUB-2015-026, 2015 URL: https://cds.cern.ch/record/2037717
  106. ATLAS Collaboration “Electron and photon efficiencies in LHC Run 2 with the ATLAS experiment”, 2023 arXiv:2308.13362 [hep-ex]
  107. ATLAS Collaboration “Muon reconstruction performance of the ATLAS detector in proton–proton collision data at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Eur. Phys. J. C 76, 2016, pp. 292 DOI: 10.1140/epjc/s10052-016-4120-y
  108. ATLAS Collaboration “Muon reconstruction and identification efficiency in ATLAS using the full Run 2 p⁢p𝑝𝑝ppitalic_p italic_p collision data set at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Eur. Phys. J. C 81, 2021, pp. 578 DOI: 10.1140/epjc/s10052-021-09233-2
  109. Matteo Cacciari, Gavin P. Salam and Gregory Soyez “The anti-ktsubscript𝑘𝑡k_{t}italic_k start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT jet clustering algorithm” In JHEP 04, 2008, pp. 063 DOI: 10.1088/1126-6708/2008/04/063
  110. Matteo Cacciari, Gavin P. Salam and Gregory Soyez “FastJet user manual” In Eur. Phys. J. C 72, 2012, pp. 1896 DOI: 10.1140/epjc/s10052-012-1896-2
  111. ATLAS Collaboration “Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1” In Eur. Phys. J. C 77, 2017, pp. 490 DOI: 10.1140/epjc/s10052-017-5004-5
  112. ATLAS Collaboration “Properties of jets and inputs to jet reconstruction and calibration with the ATLAS detector using proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\leavevmode\nobreak\ \text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV”, ATL-PHYS-PUB-2015-036, 2015 URL: https://cds.cern.ch/record/2044564
  113. ATLAS Collaboration “Jet reconstruction and performance using particle flow with the ATLAS Detector” In Eur. Phys. J. C 77, 2017, pp. 466 DOI: 10.1140/epjc/s10052-017-5031-2
  114. ATLAS Collaboration “Jet energy scale measurements and their systematic uncertainties in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Phys. Rev. D 96, 2017, pp. 072002 DOI: 10.1103/PhysRevD.96.072002
  115. ATLAS Collaboration “Selection of jets produced in 13⁢TeV13TeV13\leavevmode\nobreak\ \text{TeV}13 TeV proton–proton collisions with the ATLAS detector”, ATLAS-CONF-2015-029, 2015 URL: https://cds.cern.ch/record/2037702
  116. ATLAS Collaboration “ATLAS flavour-tagging algorithms for the LHC Run 2 p⁢p𝑝𝑝ppitalic_p italic_p collision dataset” In Eur. Phys. J. C 83, 2022, pp. 681 DOI: 10.1140/epjc/s10052-023-11699-1
  117. ATLAS Collaboration “Performance of missing transverse momentum reconstruction with the ATLAS detector using proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Eur. Phys. J. C 78, 2018, pp. 903 DOI: 10.1140/epjc/s10052-018-6288-9
  118. Matteo Cacciari and Gavin P. Salam “Pileup subtraction using jet areas” In Phys. Lett. B 659, 2008, pp. 119–126 DOI: 10.1016/j.physletb.2007.09.077
  119. François Chollet “Keras”, 2015 URL: https://keras.io
  120. “TensorFlow: Large-scale Machine Learning on Heterogeneous Systems” Software available from tensorflow.org, 2015 URL: https://www.tensorflow.org/
  121. Leo Breiman “Random Forests” In Machine Learning 45.1, 2001, pp. 5–32 DOI: 10.1023/A:1010933404324
  122. “Optuna: A Next-generation Hyperparameter Optimization Framework” In arXiv e-prints, 2019, pp. arXiv:1907.10902 DOI: 10.48550/arXiv.1907.10902
  123. Alexander L. Read “Presentation of search results: the C⁢LS𝐶subscript𝐿𝑆CL_{S}italic_C italic_L start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT technique” In J. Phys. G 28, 2002, pp. 2693 DOI: 10.1088/0954-3899/28/10/313
  124. Vinod Nair and Geoffrey E. Hinton “Rectified Linear Units Improve Restricted Boltzmann Machines” In Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML’10 Madison, WI, USA: Omnipress, Proceedings of the 27th International Conference on International Conference on Machine Learning, 2010, pp. 807–814
  125. “Measuring masses of semi-invisibly decaying particle pairs produced at hadron colliders” In Phys. Lett. B 463, 1999, pp. 99–103 DOI: 10.1016/S0370-2693(99)00945-4
  126. Christopher G. Lester and Benjamin Nachman “Bisection-based asymmetric MT⁢2𝑇2{}_{T2}start_FLOATSUBSCRIPT italic_T 2 end_FLOATSUBSCRIPT computation: a higher precision calculator than existing symmetric methods” In JHEP 03, 2015, pp. 100 DOI: 10.1007/JHEP03(2015)100
  127. ATLAS Collaboration “Object-based missing transverse momentum significance in the ATLAS Detector”, ATLAS-CONF-2018-038, 2018 URL: https://cds.cern.ch/record/2630948
  128. Andreas Hoecker “TMVA - Toolkit for Multivariate Data Analysis”, 2007 arXiv:physics/0703039 [physics.data-an]
  129. “A likelihood-based reconstruction algorithm for top-quark pairs and the KLFitter framework” In Nucl. Instrum. Meth. A 748, 2014, pp. 18–25 DOI: 10.1016/j.nima.2014.02.029
  130. “A new mass reconstruction technique for resonances decaying to τ⁢τ𝜏𝜏\tau\tauitalic_τ italic_τ” In Nucl. Instrum. Meth. A 654, 2011, pp. 481–489 DOI: 10.1016/j.nima.2011.07.009
  131. CMS Collaboration “Measurement of the cross section and angular correlations for associated production of a Z𝑍Zitalic_Z boson with b𝑏bitalic_b hadrons in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=7⁢TeV𝑠7TeV\sqrt{s}=7\,\text{TeV}square-root start_ARG italic_s end_ARG = 7 TeV” In JHEP 12, 2013, pp. 039 DOI: 10.1007/JHEP12(2013)039
  132. ATLAS Collaboration “Measurement of differential production cross-sections for a Z𝑍Zitalic_Z boson in association with b𝑏bitalic_b-jets in 7⁢TeV7TeV7\,\text{TeV}7 TeV proton–proton collisions with the ATLAS detector” In JHEP 10, 2014, pp. 141 DOI: 10.1007/JHEP10(2014)141
  133. ATLAS Collaboration “Jet Calibration and Systematic Uncertainties for Jets Reconstructed in the ATLAS Detector at s=13⁢TeV𝑠13TeV\sqrt{s}=13\leavevmode\nobreak\ \text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV”, ATL-PHYS-PUB-2015-015, 2015 URL: https://cds.cern.ch/record/2037613
  134. ATLAS Collaboration “Electron and photon performance measurements with the ATLAS detector using the 2015–2017 LHC proton–proton collision data” In JINST 14, 2019, pp. P12006 DOI: 10.1088/1748-0221/14/12/P12006
  135. G. Avoni “The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS” In JINST 13.07, 2018, pp. P07017 DOI: 10.1088/1748-0221/13/07/P07017
  136. ATLAS Collaboration “Simulation of top-quark production for the ATLAS experiment at s=13⁢TeV𝑠13TeV\sqrt{s}=13\leavevmode\nobreak\ \text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV”, ATL-PHYS-PUB-2016-004, 2016 URL: https://cds.cern.ch/record/2120417
  137. “QCD matrix elements and truncated showers” In JHEP 05, 2009, pp. 053 DOI: 10.1088/1126-6708/2009/05/053
  138. “QCD Matrix Elements + Parton Showers” In JHEP 11, 2001, pp. 063 DOI: 10.1088/1126-6708/2001/11/063
  139. ATLAS Collaboration “Combined search for the Standard Model Higgs boson in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=7⁢TeV𝑠7TeV\sqrt{s}=7\,\text{TeV}square-root start_ARG italic_s end_ARG = 7 TeV with the ATLAS detector” In Phys. Rev. D 86, 2012, pp. 032003 DOI: 10.1103/PhysRevD.86.032003
  140. “Asymptotic formulae for likelihood-based tests of new physics” In Eur. Phys. J. C 71, 2011, pp. 1554 DOI: 10.1140/epjc/s10052-011-1554-0
  141. ATLAS Collaboration “ATLAS Computing Acknowledgements”, ATL-SOFT-PUB-2023-001, 2023 URL: https://cds.cern.ch/record/2869272
  142. ATLAS Collaboration, 2012 URL: https://cds.cern.ch/record/1451888
  143. In Phys. Rev. D 97 American Physical Society, 2018, pp. 099906(E) DOI: 10.1103/PhysRevD.97.099906
  144. In Eur. Phys. J. C 73, 2013, pp. 2501 DOI: 10.1140/epjc/s10052-013-2501-z
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com