Superconductivity induced by strong electron-exciton coupling in doped atomically thin semiconductor heterostructures (2310.10726v2)
Abstract: We study a mechanism to induce superconductivity in atomically thin semiconductors where excitons mediate an effective attraction between electrons. Our model includes interaction effects beyond the paradigm of phonon-mediated superconductivity and connects to the well-established limits of Bose and Fermi polarons. By accounting for the strong-coupling physics of trions, we find that the effective electron-exciton interaction develops a strong frequency and momentum dependence accompanied by the system undergoing an emerging BCS-BEC crossover from weakly bound $s$-wave Cooper pairs to a superfluid of bipolarons. Even at strong-coupling the bipolarons remain relatively light, resulting in critical temperatures of up to 10\% of the Fermi temperature. This renders heterostructures of two-dimensional materials a promising candidate to realize superconductivity at high critical temperatures set by electron doping and trion binding energies.
- V. Crépel and L. Fu, New mechanism and exact theory of superconductivity from strong repulsive interaction, Science Advances 7, eabh2233 (2021).
- V. Crépel and L. Fu, Spin-triplet superconductivity from excitonic effect in doped insulators, Proceedings of the National Academy of Sciences 119, 17735119 (2022).
- T. Enss and W. Zwerger, Superfluidity near phase separation in bose-fermi mixtures, EPJ B 68, 383 (2009).
- F. P. Laussy, A. V. Kavokin, and I. A. Shelykh, Exciton-polariton mediated superconductivity, Phys. Rev. Lett. 104, 106402 (2010).
- J. J. Kinnunen, Z. Wu, and G. M. Bruun, Induced p𝑝pitalic_p-wave pairing in bose-fermi mixtures, Phys. Rev. Lett. 121, 253402 (2018).
- J. von Milczewski, F. Rose, and R. Schmidt, Functional-renormalization-group approach to strongly coupled Bose-Fermi mixtures in two dimensions, Phys. Rev. A 105, 013317 (2022).
- H. Fröhlich, Electrons in lattice fields, Advances in Physics 3, 325 (1954).
- T. Holstein, Studies of polaron motion, Annals of Physics 8, 325 (1959).
- M. Greiner, C. A. Regal, and D. S. Jin, Emergence of a molecular bose–einstein condensate from a fermi gas, Nature 426, 537 (2003).
- C. A. Regal, M. Greiner, and D. S. Jin, Observation of resonance condensation of fermionic atom pairs, Phys. Rev. Lett. 92, 040403 (2004).
- K. E. Strecker, G. B. Partridge, and R. G. Hulet, Conversion of an atomic fermi gas to a long-lived molecular bose gas, Phys. Rev. Lett. 91, 080406 (2003).
- S. K. Adhikari, Quantum scattering in two dimensions, Am. J Phys. 54, 362 (1986).
- N. D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models, Phys. Rev. Lett. 17, 1133 (1966).
- P. C. Hohenberg, Existence of long-range order in one and two dimensions, Phys. Rev. 158, 383 (1967).
- V. L. Berezinsky, Destruction of Long-range Order in One-dimensional and Two-dimensional Systems Possessing a Continuous Symmetry Group. II. Quantum Systems., Sov. Phys. JETP 34, 610 (1972).
- J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J Phys. C 6, 1181 (1973).
- D. S. Petrov, M. A. Baranov, and G. V. Shlyapnikov, Superfluid transition in quasi-two-dimensional fermi gases, Phys. Rev. A 67, 031601 (2003).
- See Supplementary Material.
- D. Lurié and A. J. Macfarlane, Equivalence between four-fermion and yukawa coupling, and the Z3=0subscript𝑍30{Z}_{3}=0italic_Z start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = 0 condition for composite bosons, Phys. Rev. 136, B816 (1964).
- F. Chevy, Universal phase diagram of a strongly interacting Fermi gas with unbalanced spin populations, Phys. Rev. A 74, 063628 (2006).
- M. Punk, P. T. Dumitrescu, and W. Zwerger, Polaron-to-molecule transition in a strongly imbalanced fermi gas, Phys. Rev. A 80, 053605 (2009).
- R. Schmidt and T. Enss, Excitation spectra and rf response near the polaron-to-molecule transition from the functional renormalization group, Phys. Rev. A 83, 063620 (2011).
- C. Trefzger and Y. Castin, Impurity in a fermi sea on a narrow feshbach resonance: A variational study of the polaronic and dimeronic branches, Phys. Rev. A 85, 053612 (2012).
- S. Zöllner, G. M. Bruun, and C. J. Pethick, Polarons and molecules in a two-dimensional fermi gas, Phys. Rev. A 83, 021603 (2011).
- M. M. Parish, Polaron-molecule transitions in a two-dimensional fermi gas, Phys. Rev. A 83, 051603 (2011).
- G. Bertaina, BCS-BEC crossover in two dimensions: A quantum monte carlo study, AIP Conference Proceedings 1485, 286 (2012).
- M. M. Parish and J. Levinsen, Highly polarized fermi gases in two dimensions, Phys. Rev. A 87, 033616 (2013).
- P. Kroiss and L. Pollet, Diagrammatic monte carlo study of quasi-two-dimensional fermi polarons, Phys. Rev. B 90, 104510 (2014).
- J. Vlietinck, J. Ryckebusch, and K. Van Houcke, Diagrammatic monte carlo study of the fermi polaron in two dimensions, Phys. Rev. B 89, 085119 (2014).
- S. P. Rath and R. Schmidt, Field-theoretical study of the bose polaron, Phys. Rev. A 88, 053632 (2013).
- We assume equal interaction strength of ↑↑\uparrow↑-, ↓↓\downarrow↓-electrons with the excitons as the layer separation strongly suppresses exchange effects.
- O. I. Kartavtsev and A. V. Malykh, Low-energy three-body dynamics in binary quantum gases, J Phys. B 40, 1429 (2007).
- K. Miyake, Fermi Liquid Theory of Dilute Submonolayer 3He on Thin 4He II Film: Dimer Bound State and Cooper Pairs, Prog. Theor. Phys. 69, 1794 (1983).
- S. Maiti and A. V. Chubukov, Superconductivity from repulsive interaction, AIP Conference Proceedings 1550, 3 (2013).
- D. S. Fisher and P. C. Hohenberg, Dilute bose gas in two dimensions, Phys. Rev. B 37, 4936 (1988).
- N. Prokof’ev, O. Ruebenacker, and B. Svistunov, Critical point of a weakly interacting two-dimensional bose gas, Phys. Rev. Lett. 87, 270402 (2001).
- N. Prokof’ev and B. Svistunov, Two-dimensional weakly interacting bose gas in the fluctuation region, Phys. Rev. A 66, 043608 (2002).
- D. M. Eagles, Possible pairing without superconductivity at low carrier concentrations in bulk and thin-film superconducting semiconductors, Phys. Rev. 186, 456 (1969).
- A. J. Leggett, Diatomic molecules and cooper pairs, in Modern Trends in the Theory of Condensed Matter, edited by A. Pekalski and J. A. Przystawa (Springer Berlin Heidelberg, Berlin, Heidelberg, 1980) pp. 13–27.
- P. Nozières and S. Schmitt-Rink, Bose condensation in an attractive fermion gas: From weak to strong coupling superconductivity, J Low Temp. Phys. 59, 195 (1985).
- M. Randeria, J.-M. Duan, and L.-Y. Shieh, Superconductivity in a two-dimensional fermi gas: Evolution from cooper pairing to bose condensation, Phys. Rev. B 41, 327 (1990).
- S. Schmitt-Rink, C. M. Varma, and A. E. Ruckenstein, Pairing in two dimensions, Phys. Rev. Lett. 63, 445 (1989).
- M. Drechsler and W. Zwerger, Crossover from BCS-superconductivity to bose-condensation, Ann. Phys. 504, 15 (1992).
- S. S. Botelho and C. A. R. Sá de Melo, Vortex-antivortex lattice in ultracold fermionic gases, Phys. Rev. Lett. 96, 040404 (2006).
- J. Levinsen and M. M. Parish, Strongly interacting two-dimensional fermi gases, Ann. Rev. C. At. Mol. , 1 (2015).
- C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301, 90 (1993).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.