Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Superconductivity induced by strong electron-exciton coupling in doped atomically thin semiconductor heterostructures (2310.10726v2)

Published 16 Oct 2023 in cond-mat.mes-hall, cond-mat.quant-gas, cond-mat.str-el, and quant-ph

Abstract: We study a mechanism to induce superconductivity in atomically thin semiconductors where excitons mediate an effective attraction between electrons. Our model includes interaction effects beyond the paradigm of phonon-mediated superconductivity and connects to the well-established limits of Bose and Fermi polarons. By accounting for the strong-coupling physics of trions, we find that the effective electron-exciton interaction develops a strong frequency and momentum dependence accompanied by the system undergoing an emerging BCS-BEC crossover from weakly bound $s$-wave Cooper pairs to a superfluid of bipolarons. Even at strong-coupling the bipolarons remain relatively light, resulting in critical temperatures of up to 10\% of the Fermi temperature. This renders heterostructures of two-dimensional materials a promising candidate to realize superconductivity at high critical temperatures set by electron doping and trion binding energies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. V. Crépel and L. Fu, New mechanism and exact theory of superconductivity from strong repulsive interaction, Science Advances 7, eabh2233 (2021).
  2. V. Crépel and L. Fu, Spin-triplet superconductivity from excitonic effect in doped insulators, Proceedings of the National Academy of Sciences 119, 17735119 (2022).
  3. T. Enss and W. Zwerger, Superfluidity near phase separation in bose-fermi mixtures, EPJ B 68, 383 (2009).
  4. F. P. Laussy, A. V. Kavokin, and I. A. Shelykh, Exciton-polariton mediated superconductivity, Phys. Rev. Lett. 104, 106402 (2010).
  5. J. J. Kinnunen, Z. Wu, and G. M. Bruun, Induced p𝑝pitalic_p-wave pairing in bose-fermi mixtures, Phys. Rev. Lett. 121, 253402 (2018).
  6. J. von Milczewski, F. Rose, and R. Schmidt, Functional-renormalization-group approach to strongly coupled Bose-Fermi mixtures in two dimensions, Phys. Rev. A 105, 013317 (2022).
  7. H. Fröhlich, Electrons in lattice fields, Advances in Physics 3, 325 (1954).
  8. T. Holstein, Studies of polaron motion, Annals of Physics 8, 325 (1959).
  9. M. Greiner, C. A. Regal, and D. S. Jin, Emergence of a molecular bose–einstein condensate from a fermi gas, Nature 426, 537 (2003).
  10. C. A. Regal, M. Greiner, and D. S. Jin, Observation of resonance condensation of fermionic atom pairs, Phys. Rev. Lett. 92, 040403 (2004).
  11. K. E. Strecker, G. B. Partridge, and R. G. Hulet, Conversion of an atomic fermi gas to a long-lived molecular bose gas, Phys. Rev. Lett. 91, 080406 (2003).
  12. S. K. Adhikari, Quantum scattering in two dimensions, Am. J Phys. 54, 362 (1986).
  13. N. D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models, Phys. Rev. Lett. 17, 1133 (1966).
  14. P. C. Hohenberg, Existence of long-range order in one and two dimensions, Phys. Rev. 158, 383 (1967).
  15. V. L. Berezinsky, Destruction of Long-range Order in One-dimensional and Two-dimensional Systems Possessing a Continuous Symmetry Group. II. Quantum Systems., Sov. Phys. JETP 34, 610 (1972).
  16. J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J Phys. C 6, 1181 (1973).
  17. D. S. Petrov, M. A. Baranov, and G. V. Shlyapnikov, Superfluid transition in quasi-two-dimensional fermi gases, Phys. Rev. A 67, 031601 (2003).
  18.  See Supplementary Material.
  19. D. Lurié and A. J. Macfarlane, Equivalence between four-fermion and yukawa coupling, and the Z3=0subscript𝑍30{Z}_{3}=0italic_Z start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = 0 condition for composite bosons, Phys. Rev. 136, B816 (1964).
  20. F. Chevy, Universal phase diagram of a strongly interacting Fermi gas with unbalanced spin populations, Phys. Rev. A 74, 063628 (2006).
  21. M. Punk, P. T. Dumitrescu, and W. Zwerger, Polaron-to-molecule transition in a strongly imbalanced fermi gas, Phys. Rev. A 80, 053605 (2009).
  22. R. Schmidt and T. Enss, Excitation spectra and rf response near the polaron-to-molecule transition from the functional renormalization group, Phys. Rev. A 83, 063620 (2011).
  23. C. Trefzger and Y. Castin, Impurity in a fermi sea on a narrow feshbach resonance: A variational study of the polaronic and dimeronic branches, Phys. Rev. A 85, 053612 (2012).
  24. S. Zöllner, G. M. Bruun, and C. J. Pethick, Polarons and molecules in a two-dimensional fermi gas, Phys. Rev. A 83, 021603 (2011).
  25. M. M. Parish, Polaron-molecule transitions in a two-dimensional fermi gas, Phys. Rev. A 83, 051603 (2011).
  26. G. Bertaina, BCS-BEC crossover in two dimensions: A quantum monte carlo study, AIP Conference Proceedings 1485, 286 (2012).
  27. M. M. Parish and J. Levinsen, Highly polarized fermi gases in two dimensions, Phys. Rev. A 87, 033616 (2013).
  28. P. Kroiss and L. Pollet, Diagrammatic monte carlo study of quasi-two-dimensional fermi polarons, Phys. Rev. B 90, 104510 (2014).
  29. J. Vlietinck, J. Ryckebusch, and K. Van Houcke, Diagrammatic monte carlo study of the fermi polaron in two dimensions, Phys. Rev. B 89, 085119 (2014).
  30. S. P. Rath and R. Schmidt, Field-theoretical study of the bose polaron, Phys. Rev. A 88, 053632 (2013).
  31. We assume equal interaction strength of ↑↑\uparrow↑-, ↓↓\downarrow↓-electrons with the excitons as the layer separation strongly suppresses exchange effects.
  32. O. I. Kartavtsev and A. V. Malykh, Low-energy three-body dynamics in binary quantum gases, J Phys. B 40, 1429 (2007).
  33. K. Miyake, Fermi Liquid Theory of Dilute Submonolayer 3He on Thin 4He II Film: Dimer Bound State and Cooper Pairs, Prog. Theor. Phys. 69, 1794 (1983).
  34. S. Maiti and A. V. Chubukov, Superconductivity from repulsive interaction, AIP Conference Proceedings 1550, 3 (2013).
  35. D. S. Fisher and P. C. Hohenberg, Dilute bose gas in two dimensions, Phys. Rev. B 37, 4936 (1988).
  36. N. Prokof’ev, O. Ruebenacker, and B. Svistunov, Critical point of a weakly interacting two-dimensional bose gas, Phys. Rev. Lett. 87, 270402 (2001).
  37. N. Prokof’ev and B. Svistunov, Two-dimensional weakly interacting bose gas in the fluctuation region, Phys. Rev. A 66, 043608 (2002).
  38. D. M. Eagles, Possible pairing without superconductivity at low carrier concentrations in bulk and thin-film superconducting semiconductors, Phys. Rev. 186, 456 (1969).
  39. A. J. Leggett, Diatomic molecules and cooper pairs, in Modern Trends in the Theory of Condensed Matter, edited by A. Pekalski and J. A. Przystawa (Springer Berlin Heidelberg, Berlin, Heidelberg, 1980) pp. 13–27.
  40. P. Nozières and S. Schmitt-Rink, Bose condensation in an attractive fermion gas: From weak to strong coupling superconductivity, J Low Temp. Phys. 59, 195 (1985).
  41. M. Randeria, J.-M. Duan, and L.-Y. Shieh, Superconductivity in a two-dimensional fermi gas: Evolution from cooper pairing to bose condensation, Phys. Rev. B 41, 327 (1990).
  42. S. Schmitt-Rink, C. M. Varma, and A. E. Ruckenstein, Pairing in two dimensions, Phys. Rev. Lett. 63, 445 (1989).
  43. M. Drechsler and W. Zwerger, Crossover from BCS-superconductivity to bose-condensation, Ann. Phys. 504, 15 (1992).
  44. S. S. Botelho and C. A. R. Sá de Melo, Vortex-antivortex lattice in ultracold fermionic gases, Phys. Rev. Lett. 96, 040404 (2006).
  45. J. Levinsen and M. M. Parish, Strongly interacting two-dimensional fermi gases, Ann. Rev. C. At. Mol. , 1 (2015).
  46. C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301, 90 (1993).
Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.