Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Realizing Topological Superconductivity in Tunable Bose-Fermi Mixtures with Transition Metal Dichalcogenide Heterostructures (2310.10720v2)

Published 16 Oct 2023 in cond-mat.mes-hall, cond-mat.quant-gas, cond-mat.str-el, and quant-ph

Abstract: Heterostructures of two-dimensional transition metal dichalcogenides (TMDs) are emerging as a promising platform for investigating exotic correlated states of matter. Here, we propose to engineer Bose-Fermi mixtures in these systems by coupling inter-layer excitons to doped charges in a trilayer structure. Their interactions are determined by the inter-layer trion, whose spin-selective nature allows excitons to mediate an attractive interaction between charge carriers of only one spin species. Remarkably, we find that this causes the system to become unstable to topological p+ip superconductivity at low temperatures. We then demonstrate a general mechanism to develop and control this unconventional state by tuning the trion binding energy using a solid-state Feshbach resonance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. L. Viverit, C. J. Pethick, and H. Smith, Zero-temperature phase diagram of binary boson-fermion mixtures, Phys. Rev. A 61, 053605 (2000).
  2. S. Powell, S. Sachdev, and H. P. Büchler, Depletion of the bose-einstein condensate in bose-fermi mixtures, Phys. Rev. B 72, 024534 (2005).
  3. H. P. Büchler and G. Blatter, Supersolid versus phase separation in atomic bose-fermi mixtures, Phys. Rev. Lett. 91, 130404 (2003).
  4. T. Enss and W. Zwerger, Superfluidity near phase separation in bose-fermi mixtures, The European Physical Journal B 68, 383 (2009).
  5. E. Fratini and P. Pieri, Pairing and condensation in a resonant bose-fermi mixture, Phys. Rev. A 81, 051605 (2010).
  6. M. Matuszewski, T. Taylor, and A. V. Kavokin, Exciton supersolidity in hybrid bose-fermi systems, Phys. Rev. Lett. 108, 060401 (2012).
  7. J. J. Kinnunen, Z. Wu, and G. M. Bruun, Induced p𝑝pitalic_p-wave pairing in bose-fermi mixtures, Phys. Rev. Lett. 121, 253402 (2018).
  8. G. Margalit, E. Berg, and Y. Oreg, Theory of multi-orbital topological superconductivity in transition metal dichalcogenides, Annals of Physics 435, 168561 (2021).
  9. C. Lane and J.-X. Zhu, Identifying topological superconductivity in two-dimensional transition-metal dichalcogenides, Phys. Rev. Mater. 6, 094001 (2022).
  10. M. M. Scherer, D. M. Kennes, and L. Classen, Chiral superconductivity with enhanced quantized Hall responses in moiré transition metal dichalcogenides, npj Quantum Mater. 7, 1 (2022).
  11. X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011).
  12. J. Alicea, New directions in the pursuit of majorana fermions in solid state systems, Reports on Progress in Physics 75, 076501 (2012).
  13. C. Kallin and J. Berlinsky, Chiral superconductors, Reports on Progress in Physics 79, 054502 (2016).
  14. O. Witham, R. J. Hunt, and N. D. Drummond, Stability of trions in coupled quantum wells modeled by two-dimensional bilayers, Phys. Rev. B 97, 075424 (2018).
  15. R. Tempelaar and T. C. Berkelbach, Many-body simulation of two-dimensional electronic spectroscopy of excitons and trions in monolayer transition metal dichalcogenides, Nat. Commun. 10, 1 (2019).
  16. D. D. Dai and L. Fu, Strong-coupling phases of trions and excitons in electron-hole bilayers at commensurate densities (2023), arXiv:2308.00825 [cond-mat.str-el] .
  17. See supplemental materials for details.
  18. M. M. Fogler, L. V. Butov, and K. S. Novoselov, High-temperature superfluidity with indirect excitons in van der Waals heterostructures, Nat. Commun. 5, 1 (2014).
  19. S. Gupta, A. Kutana, and B. I. Yakobson, Heterobilayers of 2D materials as a platform for excitonic superfluidity, Nat. Commun. 11, 1 (2020).
  20. A. Filinov, N. V. Prokof’ev, and M. Bonitz, Berezinskii-kosterlitz-thouless transition in two-dimensional dipole systems, Phys. Rev. Lett. 105, 070401 (2010).
  21. D. S. Petrov, D. M. Gangardt, and G. V. Shlyapnikov, Low-dimensional trapped gases, J. Phys. IV France. 116, 5 (2004).
  22. A. Boudjemâa and G. V. Shlyapnikov, Two-dimensional dipolar bose gas with the roton-maxon excitation spectrum, Phys. Rev. A 87, 025601 (2013).
  23. F. J. Wegner, Flow equations for Hamiltonians, Nucl. Phys. B Proc. Suppl. 90, 141 (2000).
  24. S. D. Glazek and K. G. Wilson, Perturbative renormalization group for hamiltonians, Phys. Rev. D 49, 4214 (1994).
  25. A. Mielke, Calculating critical temperatures of superconductivity from a renormalized hamiltonian, Europhysics Letters 40, 195 (1997).
  26. A. Abrikosov, L. Gor’kov, and I. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Dover Books on Physics Series (Dover Publications, 1975).
  27. M. J. Stephen and H. Suhl, Weak time dependence in pure superconductors, Phys. Rev. Lett. 13, 797 (1964).
  28. P. W. Anderson, N. R. Werthamer, and J. M. Luttinger, An additional equation in the phenomenology of superconductivity: Resistive effects, Phys. Rev. 138, A1157 (1965).
  29. E. Abrahams and T. Tsuneto, Time variation of the ginzburg-landau order parameter, Phys. Rev. 152, 416 (1966).
Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.