Realizing Topological Superconductivity in Tunable Bose-Fermi Mixtures with Transition Metal Dichalcogenide Heterostructures (2310.10720v2)
Abstract: Heterostructures of two-dimensional transition metal dichalcogenides (TMDs) are emerging as a promising platform for investigating exotic correlated states of matter. Here, we propose to engineer Bose-Fermi mixtures in these systems by coupling inter-layer excitons to doped charges in a trilayer structure. Their interactions are determined by the inter-layer trion, whose spin-selective nature allows excitons to mediate an attractive interaction between charge carriers of only one spin species. Remarkably, we find that this causes the system to become unstable to topological p+ip superconductivity at low temperatures. We then demonstrate a general mechanism to develop and control this unconventional state by tuning the trion binding energy using a solid-state Feshbach resonance.
- L. Viverit, C. J. Pethick, and H. Smith, Zero-temperature phase diagram of binary boson-fermion mixtures, Phys. Rev. A 61, 053605 (2000).
- S. Powell, S. Sachdev, and H. P. Büchler, Depletion of the bose-einstein condensate in bose-fermi mixtures, Phys. Rev. B 72, 024534 (2005).
- H. P. Büchler and G. Blatter, Supersolid versus phase separation in atomic bose-fermi mixtures, Phys. Rev. Lett. 91, 130404 (2003).
- T. Enss and W. Zwerger, Superfluidity near phase separation in bose-fermi mixtures, The European Physical Journal B 68, 383 (2009).
- E. Fratini and P. Pieri, Pairing and condensation in a resonant bose-fermi mixture, Phys. Rev. A 81, 051605 (2010).
- M. Matuszewski, T. Taylor, and A. V. Kavokin, Exciton supersolidity in hybrid bose-fermi systems, Phys. Rev. Lett. 108, 060401 (2012).
- J. J. Kinnunen, Z. Wu, and G. M. Bruun, Induced p𝑝pitalic_p-wave pairing in bose-fermi mixtures, Phys. Rev. Lett. 121, 253402 (2018).
- G. Margalit, E. Berg, and Y. Oreg, Theory of multi-orbital topological superconductivity in transition metal dichalcogenides, Annals of Physics 435, 168561 (2021).
- C. Lane and J.-X. Zhu, Identifying topological superconductivity in two-dimensional transition-metal dichalcogenides, Phys. Rev. Mater. 6, 094001 (2022).
- M. M. Scherer, D. M. Kennes, and L. Classen, Chiral superconductivity with enhanced quantized Hall responses in moiré transition metal dichalcogenides, npj Quantum Mater. 7, 1 (2022).
- X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011).
- J. Alicea, New directions in the pursuit of majorana fermions in solid state systems, Reports on Progress in Physics 75, 076501 (2012).
- C. Kallin and J. Berlinsky, Chiral superconductors, Reports on Progress in Physics 79, 054502 (2016).
- O. Witham, R. J. Hunt, and N. D. Drummond, Stability of trions in coupled quantum wells modeled by two-dimensional bilayers, Phys. Rev. B 97, 075424 (2018).
- R. Tempelaar and T. C. Berkelbach, Many-body simulation of two-dimensional electronic spectroscopy of excitons and trions in monolayer transition metal dichalcogenides, Nat. Commun. 10, 1 (2019).
- D. D. Dai and L. Fu, Strong-coupling phases of trions and excitons in electron-hole bilayers at commensurate densities (2023), arXiv:2308.00825 [cond-mat.str-el] .
- See supplemental materials for details.
- M. M. Fogler, L. V. Butov, and K. S. Novoselov, High-temperature superfluidity with indirect excitons in van der Waals heterostructures, Nat. Commun. 5, 1 (2014).
- S. Gupta, A. Kutana, and B. I. Yakobson, Heterobilayers of 2D materials as a platform for excitonic superfluidity, Nat. Commun. 11, 1 (2020).
- A. Filinov, N. V. Prokof’ev, and M. Bonitz, Berezinskii-kosterlitz-thouless transition in two-dimensional dipole systems, Phys. Rev. Lett. 105, 070401 (2010).
- D. S. Petrov, D. M. Gangardt, and G. V. Shlyapnikov, Low-dimensional trapped gases, J. Phys. IV France. 116, 5 (2004).
- A. Boudjemâa and G. V. Shlyapnikov, Two-dimensional dipolar bose gas with the roton-maxon excitation spectrum, Phys. Rev. A 87, 025601 (2013).
- F. J. Wegner, Flow equations for Hamiltonians, Nucl. Phys. B Proc. Suppl. 90, 141 (2000).
- S. D. Glazek and K. G. Wilson, Perturbative renormalization group for hamiltonians, Phys. Rev. D 49, 4214 (1994).
- A. Mielke, Calculating critical temperatures of superconductivity from a renormalized hamiltonian, Europhysics Letters 40, 195 (1997).
- A. Abrikosov, L. Gor’kov, and I. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Dover Books on Physics Series (Dover Publications, 1975).
- M. J. Stephen and H. Suhl, Weak time dependence in pure superconductors, Phys. Rev. Lett. 13, 797 (1964).
- P. W. Anderson, N. R. Werthamer, and J. M. Luttinger, An additional equation in the phenomenology of superconductivity: Resistive effects, Phys. Rev. 138, A1157 (1965).
- E. Abrahams and T. Tsuneto, Time variation of the ginzburg-landau order parameter, Phys. Rev. 152, 416 (1966).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.