Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Approach to Comprehending Users' Preferences for Accurate Personalized News Recommendation (2310.09401v4)

Published 13 Oct 2023 in cs.IR and cs.AI

Abstract: Personalized news recommendation aims to assist users in finding news articles that align with their interests, which plays a pivotal role in mitigating users' information overload problem. Although many recent works have been studied for better personalized news recommendation, the following challenges should be explored more: (C1) Comprehending manifold intents coupled within a news article, (C2) Differentiating varying post-read preferences of news articles, and (C3) Addressing the cold-start user problem. To tackle the aforementioned challenges together, in this paper, we propose a novel personalized news recommendation framework (CROWN) that employs (1) category-guided intent disentanglement for (C1), (2) consistency-based news representation for (C2), and (3) GNN-enhanced hybrid user representation for (C3). Furthermore, we incorporate a category prediction into the training process of CROWN as an auxiliary task, which provides supplementary supervisory signals to enhance intent disentanglement. Extensive experiments on two real-world datasets reveal that (1) CROWN provides consistent performance improvements over ten state-of-the-art news recommendation methods and (2) the proposed strategies significantly improve the accuracy of CROWN.

Summary

We haven't generated a summary for this paper yet.