Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lattice real-time simulations with learned optimal kernels (2310.08053v1)

Published 12 Oct 2023 in hep-lat, cond-mat.other, hep-th, nucl-th, and stat.ML

Abstract: We present a simulation strategy for the real-time dynamics of quantum fields, inspired by reinforcement learning. It builds on the complex Langevin approach, which it amends with system specific prior information, a necessary prerequisite to overcome this exceptionally severe sign problem. The optimization process underlying our machine learning approach is made possible by deploying inherently stable solvers of the complex Langevin stochastic process and a novel optimality criterion derived from insight into so-called boundary terms. This conceptual and technical progress allows us to both significantly extend the range of real-time simulations in 1+1d scalar field theory beyond the state-of-the-art and to avoid discretization artifacts that plagued previous real-time field theory simulations. Limitations of and promising future directions are discussed.

Citations (6)

Summary

We haven't generated a summary for this paper yet.