Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum-classical simulation of quantum field theory by quantum circuit learning (2311.16297v1)

Published 27 Nov 2023 in hep-th, cs.LG, hep-ph, nucl-th, and quant-ph

Abstract: We employ quantum circuit learning to simulate quantum field theories (QFTs). Typically, when simulating QFTs with quantum computers, we encounter significant challenges due to the technical limitations of quantum devices when implementing the Hamiltonian using Pauli spin matrices. To address this challenge, we leverage quantum circuit learning, employing a compact configuration of qubits and low-depth quantum circuits to predict real-time dynamics in quantum field theories. The key advantage of this approach is that a single-qubit measurement can accurately forecast various physical parameters, including fully-connected operators. To demonstrate the effectiveness of our method, we use it to predict quench dynamics, chiral dynamics and jet production in a 1+1-dimensional model of quantum electrodynamics. We find that our predictions closely align with the results of rigorous classical calculations, exhibiting a high degree of accuracy. This hybrid quantum-classical approach illustrates the feasibility of efficiently simulating large-scale QFTs on cutting-edge quantum devices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. N. Klco, E. F. Dumitrescu, A. J. McCaskey, T. D. Morris, R. C. Pooser, M. Sanz, E. Solano, P. Lougovski,  and M. J. Savage, “Quantum-classical computation of Schwinger model dynamics using quantum computers,” Phys. Rev. A 98, 032331 (2018), arXiv:1803.03326 [quant-ph] .
  2. Nouman Butt, Simon Catterall, Yannick Meurice, Ryo Sakai,  and Judah Unmuth-Yockey, “Tensor network formulation of the massless Schwinger model with staggered fermions,” Phys. Rev. D 101, 094509 (2020), arXiv:1911.01285 [hep-lat] .
  3. Giuseppe Magnifico, Marcello Dalmonte, Paolo Facchi, Saverio Pascazio, Francesco V. Pepe,  and Elisa Ercolessi, “Real Time Dynamics and Confinement in the ℤnsubscriptℤ𝑛\mathbb{Z}_{n}blackboard_Z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT Schwinger-Weyl lattice model for 1+1 QED,” Quantum 4, 281 (2020), arXiv:1909.04821 [quant-ph] .
  4. Alexander F. Shaw, Pavel Lougovski, Jesse R. Stryker,  and Nathan Wiebe, “Quantum Algorithms for Simulating the Lattice Schwinger Model,” Quantum 4, 306 (2020), arXiv:2002.11146 [quant-ph] .
  5. Dmitri E. Kharzeev and Yuta Kikuchi, “Real-time chiral dynamics from a digital quantum simulation,” Phys. Rev. Res. 2, 023342 (2020), arXiv:2001.00698 [hep-ph] .
  6. Kazuki Ikeda, Dmitri E. Kharzeev,  and Yuta Kikuchi, “Real-time dynamics of Chern-Simons fluctuations near a critical point,” Phys. Rev. D 103, L071502 (2021), arXiv:2012.02926 [hep-ph] .
  7. Marco Rigobello, Simone Notarnicola, Giuseppe Magnifico,  and Simone Montangero, “Entanglement generation in (1+1)D QED scattering processes,” Phys. Rev. D 104, 114501 (2021), arXiv:2105.03445 [hep-lat] .
  8. Kazuki Ikeda, Dmitri E. Kharzeev, René Meyer,  and Shuzhe Shi, “Detecting the critical point through entanglement in the schwinger model,” Phys. Rev. D 108, L091501 (2023a).
  9. Christian W. Bauer et al., “Quantum Simulation for High Energy Physics,”   (2022), arXiv:2204.03381 [quant-ph] .
  10. Hiroki Sukeno and Takuya Okuda, “Measurement-based quantum simulation of Abelian lattice gauge theories,” SciPost Phys. 14, 129 (2023).
  11. Roland C. Farrell, Marc Illa, Anthony N. Ciavarella,  and Martin J. Savage, “Scalable Circuits for Preparing Ground States on Digital Quantum Computers: The Schwinger Model Vacuum on 100 Qubits,”   (2023), arXiv:2308.04481 [quant-ph] .
  12. Christian W. Bauer, Zohreh Davoudi, Natalie Klco,  and Martin J. Savage, “Quantum simulation of fundamental particles and forces,” Nature Rev. Phys. 5, 420–432 (2023).
  13. K. Mitarai, M. Negoro, M. Kitagawa,  and K. Fujii, “Quantum circuit learning,” Phys. Rev. A 98, 032309 (2018).
  14. Vojtěch Havlíček, Antonio D Córcoles, Kristan Temme, Aram W Harrow, Abhinav Kandala, Jerry M Chow,  and Jay M Gambetta, “Supervised learning with quantum-enhanced feature spaces,” Nature 567, 209–212 (2019).
  15. Adrien Florio, David Frenklakh, Kazuki Ikeda, Dmitri Kharzeev, Vladimir Korepin, Shuzhe Shi,  and Kwangmin Yu, “Real-time nonperturbative dynamics of jet production in schwinger model: Quantum entanglement and vacuum modification,” Phys. Rev. Lett. 131, 021902 (2023).
  16. Kenji Fukushima, Dmitri E. Kharzeev,  and Harmen J. Warringa, “The Chiral Magnetic Effect,” Phys. Rev. D 78, 074033 (2008), arXiv:0808.3382 [hep-ph] .
  17. Yannis Burnier, Dmitri E. Kharzeev, Jinfeng Liao,  and Ho-Ung Yee, “Chiral magnetic wave at finite baryon density and the electric quadrupole moment of the quark-gluon plasma,” Phys. Rev. Lett. 107, 052303 (2011).
  18. D. E. Kharzeev, J. Liao, S. A. Voloshin,  and G. Wang, “Chiral magnetic and vortical effects in high-energy nuclear collisions—A status report,” Prog. Part. Nucl. Phys. 88, 1–28 (2016), arXiv:1511.04050 [hep-ph] .
  19. Dmitri E. Kharzeev, “The Chiral Magnetic Effect and Anomaly-Induced Transport,” Prog. Part. Nucl. Phys. 75, 133–151 (2014), arXiv:1312.3348 [hep-ph] .
  20. A. Casher, John B. Kogut,  and Leonard Susskind, “Vacuum polarization and the absence of free quarks,” Phys. Rev. D 10, 732–745 (1974).
  21. Frasher Loshaj and Dmitri E. Kharzeev, “LPM effect as the origin of the jet fragmentation scaling in heavy ion collisions,” Int. J. Mod. Phys. E 21, 1250088 (2012), arXiv:1111.0493 [hep-ph] .
  22. Dmitri E. Kharzeev and Frashër Loshaj, “Jet energy loss and fragmentation in heavy ion collisions,” Phys. Rev. D 87, 077501 (2013), arXiv:1212.5857 [hep-ph] .
  23. Akinori Tanaka and Akio Tomiya, “Detection of phase transition via convolutional neural networks,” Journal of the Physical Society of Japan 86, 063001 (2017), https://doi.org/10.7566/JPSJ.86.063001 .
  24. Koji Hashimoto, Sotaro Sugishita, Akinori Tanaka,  and Akio Tomiya, “Deep learning and the AdS/CFTAdSCFT\mathrm{AdS}/\mathrm{CFT}roman_AdS / roman_CFT correspondence,” Phys. Rev. D 98, 046019 (2018).
  25. Hamed Khakzad, Ilia Igashov, Arne Schneuing, Casper Goverde, Michael Bronstein,  and Bruno Correia, “A new age in protein design empowered by deep learning,” Cell Systems 14, 925–939 (2023).
  26. Amber Boehnlein et al., “Colloquium: Machine learning in nuclear physics,” Rev. Mod. Phys. 94, 031003 (2022), arXiv:2112.02309 [nucl-th] .
  27. Timo Felser, Marco Trenti, Lorenzo Sestini, Alessio Gianelle, Davide Zuliani, Donatella Lucchesi,  and Simone Montangero, “Quantum-inspired machine learning on high-energy physics data,” npj Quantum Inf. 7, 111 (2021), arXiv:2004.13747 [stat.ML] .
  28. Nhat A. Nghiem and Tzu-Chieh Wei, “Quantum algorithm for estimating largest eigenvalues,” Physics Letters A 488, 129138 (2023).
  29. Akimoto Nakayama, Kosuke Mitarai, Leonardo Placidi, Takanori Sugimoto,  and Keisuke Fujii, “VQE-generated Quantum Circuit Dataset for Machine Learning,” arXiv e-prints , arXiv:2302.09751 (2023), arXiv:2302.09751 [quant-ph] .
  30. Lento Nagano, Alexander Miessen, Tamiya Onodera, Ivano Tavernelli, Francesco Tacchino,  and Koji Terashi, “Quantum data learning for quantum simulations in high-energy physics,” arXiv e-prints , arXiv:2306.17214 (2023), arXiv:2306.17214 [quant-ph] .
  31. Sukin Sim, Peter D. Johnson,  and Alán Aspuru-Guzik, “Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms,” Advanced Quantum Technologies 2, 1900070 (2019), https://onlinelibrary.wiley.com/doi/pdf/10.1002/qute.201900070 .
  32. Mohammad H. Amin, Evgeny Andriyash, Jason Rolfe, Bohdan Kulchytskyy,  and Roger Melko, “Quantum boltzmann machine,” Phys. Rev. X 8, 021050 (2018).
  33. Guillaume Verdon, Trevor McCourt, Enxhell Luzhnica, Vikash Singh, Stefan Leichenauer,  and Jack Hidary, “Quantum Graph Neural Networks,” arXiv e-prints , arXiv:1909.12264 (2019), arXiv:1909.12264 [quant-ph] .
  34. Ling Hu, Shu-Hao Wu, Weizhou Cai, Yuwei Ma, Xianghao Mu, Yuan Xu, Haiyan Wang, Yipu Song, Dong-Ling Deng, Chang-Ling Zou,  and Luyan Sun, “Quantum generative adversarial learning in a superconducting quantum circuit,” Science Advances 5, eaav2761 (2019), arXiv:1808.02893 [quant-ph] .
  35. Pierre-Luc Dallaire-Demers and Nathan Killoran, “Quantum generative adversarial networks,” Phys. Rev. A 98, 012324 (2018).
  36. Seth Lloyd and Christian Weedbrook, “Quantum generative adversarial learning,” Phys. Rev. Lett. 121, 040502 (2018).
  37. Julian S. Schwinger, “Gauge Invariance and Mass. 2.” Phys. Rev. 128, 2425–2429 (1962).
  38. Kazuki Ikeda, Dmitri E. Kharzeev,  and Shuzhe Shi, “Nonlinear chiral magnetic waves,” Phys. Rev. D 108, 074001 (2023b), arXiv:2305.05685 [hep-ph] .
  39. John B. Kogut and Leonard Susskind, “Hamiltonian Formulation of Wilson’s Lattice Gauge Theories,” Phys. Rev. D 11, 395–408 (1975).
  40. Leonard Susskind, “Lattice Fermions,” Phys. Rev. D 16, 3031–3039 (1977).
  41. Pascual Jordan and Eugene P. Wigner, “About the Pauli exclusion principle,” Z. Phys. 47, 631–651 (1928).

Summary

We haven't generated a summary for this paper yet.