Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Kimi K2 157 tok/s Pro
2000 character limit reached

Semantic-Forward Relaying: A Novel Framework Towards 6G Cooperative Communications (2310.07987v2)

Published 12 Oct 2023 in cs.NI, cs.IT, cs.LG, eess.SP, and math.IT

Abstract: This letter proposes a novel relaying framework, semantic-forward (SF), for cooperative communications towards the sixth-generation (6G) wireless networks. The SF relay extracts and transmits the semantic features, which reduces forwarding payload, and also improves the network robustness against intra-link errors. Based on the theoretical basis for cooperative communications with side information and the turbo principle, we design a joint source-channel coding algorithm to iteratively exchange the extrinsic information for enhancing the decoding gains at the destination. Surprisingly, simulation results indicate that even in bad channel conditions, SF relaying can still effectively improve the recovered information quality.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. C.-X. Wang, X. You, X. Gao, X. Zhu, Z. Li, C. Zhang, H. Wang, Y. Huang, Y. Chen, H. Haas, J. S. Thompson, E. G. Larsson, M. D. Renzo, W. Tong, P. Zhu, X. Shen, H. V. Poor, and L. Hanzo, “On the road to 6G: Visions, requirements, key technologies, and testbeds,” IEEE Communications Surveys & Tutorials, vol. 25, no. 2, pp. 905–974, Second quarter 2023.
  2. W. Yang, H. Du, Z. Q. Liew, W. Y. B. Lim, Z. Xiong, D. Niyato, X. Chi, X. Shen, and C. Miao, “Semantic communications for future internet: Fundamentals, applications, and challenges,” IEEE Communications Surveys & Tutorials, vol. 25, no. 1, pp. 213–250, First quarter 2023.
  3. H. Zhang, S. Shao, M. Tao, X. Bi, and K. B. Letaief, “Deep learning-enabled semantic communication systems with task-unaware transmitter and dynamic data,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 1, pp. 170–185, Jan. 2023.
  4. H. Feng, Y. Yang, and Z. Han, “SCAI: Scalable AI generative content for enhanced semantic communication,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Seoul, Korea, Apr. 2024, invited.
  5. G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and capacity theorems for relay networks,” IEEE Transactions on Information Theory, vol. 51, no. 9, pp. 3037–3063, Sep. 2005.
  6. T. Cover and A. El Gamal, “Capacity theorems for the relay channel,” IEEE Transactions on Information Theory, vol. 25, no. 5, pp. 572–584, Sep. 1979.
  7. W. Lin, S. Qian, and T. Matsumoto, “Lossy-forward relaying for lossy communications: Rate-distortion and outage probability analyses,” IEEE Transactions on Wireless Communications, vol. 18, no. 8, pp. 3974–3986, Aug. 2019.
  8. X. Luo, B. Yin, Z. Chen, B. Xia, and J. Wang, “Autoencoder-based semantic communication systems with relay channels,” in IEEE International Conference on Communications (ICC) Workshops, Seoul, Republic of Korea, May 2022, pp. 711–716.
  9. C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: Turbo-codes,” IEEE Transactions on Communications, vol. 44, no. 10, pp. 1261–1271, Oct. 1996.
  10. A. Wyner and J. Ziv, “The rate-distortion function for source coding with side information at the decoder,” IEEE Transactions on information Theory, vol. 22, no. 1, pp. 1–10, Jan. 1976.
  11. G. Xin, P. Fan, and K. B. Letaief, “Semantic information theory: Recent advances and future challenges,” Preprints, October 2023. [Online]. Available: https://doi.org/10.20944/preprints202310.1208.v1
  12. J. Garcia-Frias and Y. Zhao, “Near-Shannon/Slepian-Wolf performance for unknown correlated sources over AWGN channels,” IEEE Transactions on Communications, vol. 53, no. 4, pp. 555–559, Apr. 2005.
  13. X. Zhou, X. He, K. Anwar, and T. Matsumoto, “GREAT-CEO: larGe scale distRibuted dEcision mAking Technique for wireless Chief Executive Officer problems,” IEICE Transactions on Communications, vol. 95, no. 12, pp. 3654–3662, Dec. 2012.
  14. “Semantic-forward relaying,” GitHub, Oct. 2023. [Online]. Available: https://github.com/linwest/Semantic_Forward
  15. A. Krizhevsky, “Learning multiple layers of features from tiny images,” Toronto, ON, Canada, 2009. [Online]. Available: https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
  16. R. Gallager, “Low-density parity-check codes,” IRE Transactions on Information Theory, vol. 8, no. 1, pp. 21–28, Jan. 1962.
  17. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.