Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph-SCP: Accelerating Set Cover Problems with Graph Neural Networks (2310.07979v2)

Published 12 Oct 2023 in cs.LG and cs.DM

Abstract: Machine learning (ML) approaches are increasingly being used to accelerate combinatorial optimization (CO) problems. We investigate the Set Cover Problem (SCP) and propose Graph-SCP, a graph neural network method that augments existing optimization solvers by learning to identify a much smaller sub-problem that contains the solution space. Graph-SCP uses both supervised learning from prior solved instances and unsupervised learning aimed at minimizing the SCP objective. We evaluate the performance of Graph-SCP on synthetically weighted and unweighted SCP instances with diverse problem characteristics and complexities, and on instances from the OR Library, a canonical benchmark for SCP. We show that Graph-SCP reduces the problem size by 60-80% and achieves runtime speedups of up to 10x on average when compared to Gurobi (a state-of-the-art commercial solver), while maintaining solution quality. This is in contrast to fast greedy solutions that significantly compromise solution quality to achieve guaranteed polynomial runtime. We showcase Graph-SCP's ability to generalize to larger problem sizes, training on SCP instances with up to 3,000 subsets and testing on SCP instances with up to 10,000 subsets.

Summary

We haven't generated a summary for this paper yet.