Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Co-NavGPT: Multi-Robot Cooperative Visual Semantic Navigation using Large Language Models (2310.07937v2)

Published 11 Oct 2023 in cs.RO and cs.AI

Abstract: In advanced human-robot interaction tasks, visual target navigation is crucial for autonomous robots navigating unknown environments. While numerous approaches have been developed in the past, most are designed for single-robot operations, which often suffer from reduced efficiency and robustness due to environmental complexities. Furthermore, learning policies for multi-robot collaboration are resource-intensive. To address these challenges, we propose Co-NavGPT, an innovative framework that integrates LLMs as a global planner for multi-robot cooperative visual target navigation. Co-NavGPT encodes the explored environment data into prompts, enhancing LLMs' scene comprehension. It then assigns exploration frontiers to each robot for efficient target search. Experimental results on Habitat-Matterport 3D (HM3D) demonstrate that Co-NavGPT surpasses existing models in success rates and efficiency without any learning process, demonstrating the vast potential of LLMs in multi-robot collaboration domains. The supplementary video, prompts, and code can be accessed via the following link: https://sites.google.com/view/co-navgpt

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Bangguo Yu (5 papers)
  2. Hamidreza Kasaei (41 papers)
  3. Ming Cao (128 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.