Papers
Topics
Authors
Recent
2000 character limit reached

FMM-Head: Enhancing Autoencoder-based ECG anomaly detection with prior knowledge (2310.05848v1)

Published 6 Oct 2023 in cs.LG, cs.AI, and eess.SP

Abstract: Detecting anomalies in electrocardiogram data is crucial to identifying deviations from normal heartbeat patterns and providing timely intervention to at-risk patients. Various AutoEncoder models (AE) have been proposed to tackle the anomaly detection task with ML. However, these models do not consider the specific patterns of ECG leads and are unexplainable black boxes. In contrast, we replace the decoding part of the AE with a reconstruction head (namely, FMM-Head) based on prior knowledge of the ECG shape. Our model consistently achieves higher anomaly detection capabilities than state-of-the-art models, up to 0.31 increase in area under the ROC curve (AUROC), with as little as half the original model size and explainable extracted features. The processing time of our model is four orders of magnitude lower than solving an optimization problem to obtain the same parameters, thus making it suitable for real-time ECG parameters extraction and anomaly detection.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.