Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EB-GAME: A Game-Changer in ECG Heartbeat Anomaly Detection (2404.15333v1)

Published 8 Apr 2024 in eess.SP and cs.LG

Abstract: Cardiologists use electrocardiograms (ECG) for the detection of arrhythmias. However, continuous monitoring of ECG signals to detect cardiac abnormal-ities requires significant time and human resources. As a result, several deep learning studies have been conducted in advance for the automatic detection of arrhythmia. These models show relatively high performance in supervised learning, but are not applicable in cases with few training examples. This is because abnormal ECG data is scarce compared to normal data in most real-world clinical settings. Therefore, in this study, GAN-based anomaly detec-tion, i.e., unsupervised learning, was employed to address the issue of data imbalance. This paper focuses on detecting abnormal signals in electrocardi-ograms (ECGs) using only labels from normal signals as training data. In-spired by self-supervised vision transformers, which learn by dividing images into patches, and masked auto-encoders, known for their effectiveness in patch reconstruction and solving information redundancy, we introduce the ECG Heartbeat Anomaly Detection model, EB-GAME. EB-GAME was trained and validated on the MIT-BIH Arrhythmia Dataset, where it achieved state-of-the-art performance on this benchmark.

Summary

We haven't generated a summary for this paper yet.