Papers
Topics
Authors
Recent
Search
2000 character limit reached

On changepoint detection in functional data using empirical energy distance

Published 7 Oct 2023 in stat.ME and econ.EM | (2310.04853v1)

Abstract: We propose a novel family of test statistics to detect the presence of changepoints in a sequence of dependent, possibly multivariate, functional-valued observations. Our approach allows to test for a very general class of changepoints, including the "classical" case of changes in the mean, and even changes in the whole distribution. Our statistics are based on a generalisation of the empirical energy distance; we propose weighted functionals of the energy distance process, which are designed in order to enhance the ability to detect breaks occurring at sample endpoints. The limiting distribution of the maximally selected version of our statistics requires only the computation of the eigenvalues of the covariance function, thus being readily implementable in the most commonly employed packages, e.g. R. We show that, under the alternative, our statistics are able to detect changepoints occurring even very close to the beginning/end of the sample. In the presence of multiple changepoints, we propose a binary segmentation algorithm to estimate the number of breaks and the locations thereof. Simulations show that our procedures work very well in finite samples. We complement our theory with applications to financial and temperature data.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.