Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging LLVM's ScalarEvolution for Symbolic Data Cache Analysis (2310.04809v2)

Published 7 Oct 2023 in cs.PL

Abstract: While instruction cache analysis is essentially a solved problem, data cache analysis is more challenging. In contrast to instruction fetches, the data accesses generated by a memory instruction may vary with the program's inputs and across dynamic occurrences of the same instruction in loops. We observe that the plain control-flow graph (CFG) abstraction employed in classical cache analyses is inadequate to capture the dynamic behavior of memory instructions. On top of plain CFGs, accurate analysis of the underlying program's cache behavior is impossible. Thus, our first contribution is the definition of a more expressive program abstraction coined symbolic control-flow graphs, which can be obtained from LLVM's ScalarEvolution analysis. To exploit this richer abstraction, our main contribution is the development of symbolic data cache analysis, a smooth generalization of classical LRU must analysis from plain to symbolic control-flow graphs. The experimental evaluation demonstrates that symbolic data cache analysis consistently outperforms classical LRU must analysis both in terms of accuracy and analysis runtime.

Summary

We haven't generated a summary for this paper yet.