Improving Neural Radiance Field using Near-Surface Sampling with Point Cloud Generation (2310.04152v2)
Abstract: Neural radiance field (NeRF) is an emerging view synthesis method that samples points in a three-dimensional (3D) space and estimates their existence and color probabilities. The disadvantage of NeRF is that it requires a long training time since it samples many 3D points. In addition, if one samples points from occluded regions or in the space where an object is unlikely to exist, the rendering quality of NeRF can be degraded. These issues can be solved by estimating the geometry of 3D scene. This paper proposes a near-surface sampling framework to improve the rendering quality of NeRF. To this end, the proposed method estimates the surface of a 3D object using depth images of the training set and sampling is performed around there only. To obtain depth information on a novel view, the paper proposes a 3D point cloud generation method and a simple refining method for projected depth from a point cloud. Experimental results show that the proposed near-surface sampling NeRF framework can significantly improve the rendering quality, compared to the original NeRF and three different state-of-the-art NeRF. In addition, one can significantly accelerate the training time of a NeRF model with the proposed near-surface sampling framework.
- Boss M, Braun R, Jampani V, et al (2021) NeRD: Neural reflectance decomposition from image collections. In: IEEE/CVF International Conference on Computer Vision, pp 12664–12674, 10.1109/ICCV48922.2021.01245 Cernea [2020] Cernea D (2020) OpenMVS: Multi-view stereo reconstruction library, URL https://cdcseacave.github.io/openMVS Chen and Williams [1993] Chen SE, Williams L (1993) View interpolation for image synthesis. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 279–288, 10.1145/166117.166153 Deng et al [2022] Deng K, Liu A, Zhu JY, et al (2022) Depth-supervised NeRF: Fewer views and faster training for free. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12872–12881, 10.1109/CVPR52688.2022.01254 Draelos et al [2015] Draelos M, Qiu Q, Bronstein A, et al (2015) Intel realsense = real low cost gaze. In: IEEE International Conference on Image Processing, pp 2520–2524, 10.1109/ICIP.2015.7351256 Gortler et al [1996] Gortler SJ, Grzeszczuk R, Szeliski R, et al (1996) The lumigraph. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 43–54, 10.1145/237170.237200 Hartley and Zisserman [2003] Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Cernea D (2020) OpenMVS: Multi-view stereo reconstruction library, URL https://cdcseacave.github.io/openMVS Chen and Williams [1993] Chen SE, Williams L (1993) View interpolation for image synthesis. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 279–288, 10.1145/166117.166153 Deng et al [2022] Deng K, Liu A, Zhu JY, et al (2022) Depth-supervised NeRF: Fewer views and faster training for free. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12872–12881, 10.1109/CVPR52688.2022.01254 Draelos et al [2015] Draelos M, Qiu Q, Bronstein A, et al (2015) Intel realsense = real low cost gaze. In: IEEE International Conference on Image Processing, pp 2520–2524, 10.1109/ICIP.2015.7351256 Gortler et al [1996] Gortler SJ, Grzeszczuk R, Szeliski R, et al (1996) The lumigraph. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 43–54, 10.1145/237170.237200 Hartley and Zisserman [2003] Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Chen SE, Williams L (1993) View interpolation for image synthesis. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 279–288, 10.1145/166117.166153 Deng et al [2022] Deng K, Liu A, Zhu JY, et al (2022) Depth-supervised NeRF: Fewer views and faster training for free. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12872–12881, 10.1109/CVPR52688.2022.01254 Draelos et al [2015] Draelos M, Qiu Q, Bronstein A, et al (2015) Intel realsense = real low cost gaze. In: IEEE International Conference on Image Processing, pp 2520–2524, 10.1109/ICIP.2015.7351256 Gortler et al [1996] Gortler SJ, Grzeszczuk R, Szeliski R, et al (1996) The lumigraph. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 43–54, 10.1145/237170.237200 Hartley and Zisserman [2003] Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Deng K, Liu A, Zhu JY, et al (2022) Depth-supervised NeRF: Fewer views and faster training for free. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12872–12881, 10.1109/CVPR52688.2022.01254 Draelos et al [2015] Draelos M, Qiu Q, Bronstein A, et al (2015) Intel realsense = real low cost gaze. In: IEEE International Conference on Image Processing, pp 2520–2524, 10.1109/ICIP.2015.7351256 Gortler et al [1996] Gortler SJ, Grzeszczuk R, Szeliski R, et al (1996) The lumigraph. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 43–54, 10.1145/237170.237200 Hartley and Zisserman [2003] Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Draelos M, Qiu Q, Bronstein A, et al (2015) Intel realsense = real low cost gaze. In: IEEE International Conference on Image Processing, pp 2520–2524, 10.1109/ICIP.2015.7351256 Gortler et al [1996] Gortler SJ, Grzeszczuk R, Szeliski R, et al (1996) The lumigraph. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 43–54, 10.1145/237170.237200 Hartley and Zisserman [2003] Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Gortler SJ, Grzeszczuk R, Szeliski R, et al (1996) The lumigraph. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 43–54, 10.1145/237170.237200 Hartley and Zisserman [2003] Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Cernea D (2020) OpenMVS: Multi-view stereo reconstruction library, URL https://cdcseacave.github.io/openMVS Chen and Williams [1993] Chen SE, Williams L (1993) View interpolation for image synthesis. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 279–288, 10.1145/166117.166153 Deng et al [2022] Deng K, Liu A, Zhu JY, et al (2022) Depth-supervised NeRF: Fewer views and faster training for free. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12872–12881, 10.1109/CVPR52688.2022.01254 Draelos et al [2015] Draelos M, Qiu Q, Bronstein A, et al (2015) Intel realsense = real low cost gaze. In: IEEE International Conference on Image Processing, pp 2520–2524, 10.1109/ICIP.2015.7351256 Gortler et al [1996] Gortler SJ, Grzeszczuk R, Szeliski R, et al (1996) The lumigraph. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 43–54, 10.1145/237170.237200 Hartley and Zisserman [2003] Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Chen SE, Williams L (1993) View interpolation for image synthesis. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 279–288, 10.1145/166117.166153 Deng et al [2022] Deng K, Liu A, Zhu JY, et al (2022) Depth-supervised NeRF: Fewer views and faster training for free. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12872–12881, 10.1109/CVPR52688.2022.01254 Draelos et al [2015] Draelos M, Qiu Q, Bronstein A, et al (2015) Intel realsense = real low cost gaze. In: IEEE International Conference on Image Processing, pp 2520–2524, 10.1109/ICIP.2015.7351256 Gortler et al [1996] Gortler SJ, Grzeszczuk R, Szeliski R, et al (1996) The lumigraph. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 43–54, 10.1145/237170.237200 Hartley and Zisserman [2003] Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Deng K, Liu A, Zhu JY, et al (2022) Depth-supervised NeRF: Fewer views and faster training for free. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12872–12881, 10.1109/CVPR52688.2022.01254 Draelos et al [2015] Draelos M, Qiu Q, Bronstein A, et al (2015) Intel realsense = real low cost gaze. In: IEEE International Conference on Image Processing, pp 2520–2524, 10.1109/ICIP.2015.7351256 Gortler et al [1996] Gortler SJ, Grzeszczuk R, Szeliski R, et al (1996) The lumigraph. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 43–54, 10.1145/237170.237200 Hartley and Zisserman [2003] Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Draelos M, Qiu Q, Bronstein A, et al (2015) Intel realsense = real low cost gaze. In: IEEE International Conference on Image Processing, pp 2520–2524, 10.1109/ICIP.2015.7351256 Gortler et al [1996] Gortler SJ, Grzeszczuk R, Szeliski R, et al (1996) The lumigraph. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 43–54, 10.1145/237170.237200 Hartley and Zisserman [2003] Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Gortler SJ, Grzeszczuk R, Szeliski R, et al (1996) The lumigraph. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 43–54, 10.1145/237170.237200 Hartley and Zisserman [2003] Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Chen SE, Williams L (1993) View interpolation for image synthesis. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 279–288, 10.1145/166117.166153 Deng et al [2022] Deng K, Liu A, Zhu JY, et al (2022) Depth-supervised NeRF: Fewer views and faster training for free. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12872–12881, 10.1109/CVPR52688.2022.01254 Draelos et al [2015] Draelos M, Qiu Q, Bronstein A, et al (2015) Intel realsense = real low cost gaze. In: IEEE International Conference on Image Processing, pp 2520–2524, 10.1109/ICIP.2015.7351256 Gortler et al [1996] Gortler SJ, Grzeszczuk R, Szeliski R, et al (1996) The lumigraph. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 43–54, 10.1145/237170.237200 Hartley and Zisserman [2003] Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Deng K, Liu A, Zhu JY, et al (2022) Depth-supervised NeRF: Fewer views and faster training for free. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12872–12881, 10.1109/CVPR52688.2022.01254 Draelos et al [2015] Draelos M, Qiu Q, Bronstein A, et al (2015) Intel realsense = real low cost gaze. In: IEEE International Conference on Image Processing, pp 2520–2524, 10.1109/ICIP.2015.7351256 Gortler et al [1996] Gortler SJ, Grzeszczuk R, Szeliski R, et al (1996) The lumigraph. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 43–54, 10.1145/237170.237200 Hartley and Zisserman [2003] Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Draelos M, Qiu Q, Bronstein A, et al (2015) Intel realsense = real low cost gaze. In: IEEE International Conference on Image Processing, pp 2520–2524, 10.1109/ICIP.2015.7351256 Gortler et al [1996] Gortler SJ, Grzeszczuk R, Szeliski R, et al (1996) The lumigraph. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 43–54, 10.1145/237170.237200 Hartley and Zisserman [2003] Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Gortler SJ, Grzeszczuk R, Szeliski R, et al (1996) The lumigraph. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 43–54, 10.1145/237170.237200 Hartley and Zisserman [2003] Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Deng K, Liu A, Zhu JY, et al (2022) Depth-supervised NeRF: Fewer views and faster training for free. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12872–12881, 10.1109/CVPR52688.2022.01254 Draelos et al [2015] Draelos M, Qiu Q, Bronstein A, et al (2015) Intel realsense = real low cost gaze. In: IEEE International Conference on Image Processing, pp 2520–2524, 10.1109/ICIP.2015.7351256 Gortler et al [1996] Gortler SJ, Grzeszczuk R, Szeliski R, et al (1996) The lumigraph. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 43–54, 10.1145/237170.237200 Hartley and Zisserman [2003] Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Draelos M, Qiu Q, Bronstein A, et al (2015) Intel realsense = real low cost gaze. In: IEEE International Conference on Image Processing, pp 2520–2524, 10.1109/ICIP.2015.7351256 Gortler et al [1996] Gortler SJ, Grzeszczuk R, Szeliski R, et al (1996) The lumigraph. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 43–54, 10.1145/237170.237200 Hartley and Zisserman [2003] Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Gortler SJ, Grzeszczuk R, Szeliski R, et al (1996) The lumigraph. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 43–54, 10.1145/237170.237200 Hartley and Zisserman [2003] Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Draelos M, Qiu Q, Bronstein A, et al (2015) Intel realsense = real low cost gaze. In: IEEE International Conference on Image Processing, pp 2520–2524, 10.1109/ICIP.2015.7351256 Gortler et al [1996] Gortler SJ, Grzeszczuk R, Szeliski R, et al (1996) The lumigraph. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 43–54, 10.1145/237170.237200 Hartley and Zisserman [2003] Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Gortler SJ, Grzeszczuk R, Szeliski R, et al (1996) The lumigraph. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 43–54, 10.1145/237170.237200 Hartley and Zisserman [2003] Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Gortler SJ, Grzeszczuk R, Szeliski R, et al (1996) The lumigraph. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 43–54, 10.1145/237170.237200 Hartley and Zisserman [2003] Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, Second Edition. Cambridge University Press Hu et al [2022] Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Hu T, Liu S, Chen Y, et al (2022) EfficientNeRF efficient neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12902–12911, 10.1109/CVPR52688.2022.01256 Johari et al [2022] Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Johari MM, Lepoittevin Y, Fleuret F (2022) GeoNeRF: Generalizing nerf with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 18344–18347, 10.1109/CVPR52688.2022.01782 Levoy and Hanrahan [1996] Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 31–42, 0.1145/237170.237199 Lin et al [2021] Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Lin CH, Ma WC, Torralba A, et al (2021) BARF: Bundle-adjusting neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5721–5731, 10.1109/ICCV48922.2021.00569 Lindell et al [2021] Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Lindell DB, Martel JNP, Wetzstein G (2021) AutoInt: Automatic integration for fast neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 14551–14560, 10.1109/CVPR46437.2021.01432 Liu et al [2020] Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Liu L, Gu J, Lin KZ, et al (2020) Neural sparse voxel fields. In: Proceedings of the International Conference on Neural Information Processing Systems, p 15651–15663 Mankoff and Russo [2013] Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Mankoff K, Russo T (2013) The kinect: A low-cost, high-resolution, short-range 3d camera. Earth Surface Processes and Landforms 38:926–936. doi.org/10.1002/esp.3332 Martin-Brualla et al [2021] Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Martin-Brualla R, Radwan N, Sajjadi MSM, et al (2021) NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7206–7215, 10.1109/CVPR46437.2021.00713 Mildenhall et al [2020] Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Mildenhall B, Srinivasan PP, Tancik M, et al (2020) NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision, pp 405–421, 10.1007/978-3-030-58452-8_24 Müller et al [2022] Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Müller T, Evans A, Schied C, et al (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Graph 41. 10.1145/3528223.3530127 Neff et al [2021] Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Neff T, Stadlbauer P, Parger M, et al (2021) DONeRF: Towards real-time rendering of neural radiance fields using depth oracle networks. Computer Graphics Forum 40:45–49. 10.1111/cgf.14340 Niemeyer and Geiger [2021] Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Niemeyer M, Geiger A (2021) GIRAFFE: Representing scenes as compositional generative neural feature fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11448–11459, 10.1109/CVPR46437.2021.01129 Park et al [2021] Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Park K, Sinha U, Barron JT, et al (2021) Nerfies: Deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision, pp 5845–5854, 10.1109/ICCV48922.2021.00581 Pumarola et al [2021] Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Pumarola A, Corona E, Pons-Moll G, et al (2021) D-NeRF: Neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10313–10322, 10.1109/CVPR46437.2021.01018 Rebain et al [2021] Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Rebain D, Jiang W, Yazdani S, et al (2021) DeRF: Decomposed radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 14148–14156, 10.1109/CVPR46437.2021.01393 Shade et al [1998] Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Shade J, Gortler S, He Lw, et al (1998) Layered depth images. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp 231–242, 10.1145/280814.280882 Srinivasan et al [2021] Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Srinivasan PP, Deng B, Zhang X, et al (2021) NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7491–7500, 10.1109/CVPR46437.2021.00741 Xie et al [2021] Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Xie C, Park K, Martin-Brualla R, et al (2021) Fig-NeRF: Figure-ground neural radiance fields for 3d object category modelling. In: International Conference on 3D Vision, p 962–971, 10.1109/3DV53792.2021.00104 Xu et al [2022] Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Xu Q, Xu Z, Philip J, et al (2022) Point-NeRF: Point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5438–5448, 10.1109/CVPR52688.2022.00536 Yao et al [2020] Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Yao Y, Luo Z, Li S, et al (2020) BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1787–1796, 10.1109/cvpr42600.2020.00186 Yen-Chen et al [2021] Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708 Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Yen-Chen L, Florence P, Barron JT, et al (2021) iNeRF: Inverting neural radiance fields for pose estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 1323–1330, 10.1109/IROS51168.2021.9636708
- Hye Bin Yoo (2 papers)
- Hyun Min Han (1 paper)
- Sung Soo Hwang (5 papers)
- Il Yong Chun (24 papers)